Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1410053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994124

RESUMEN

Aims: The ovine stifle is an established model for evaluation of knee treatments, such as meniscus replacement. This study introduces a novel ovine gait simulator for pre-testing of surgical treatments prior to in vivo animal trials. Furthermore, we describe a pilot study that assessed gait kinematics and contact pressures of native ovine stifle joints and those implanted with a novel fiber-matrix reinforced polyvinyl alcohol-polyethylene glycol (PVA-PEG) hydrogel meniscus to illustrate the efficacy of the simulator. Methods: The gait simulator controlled femoral flexion-extension and applied a 980N axial contact force to the distal tibia, whose movement was guided by the natural ligaments. Five right ovine stifle joints were implanted with a PVA-PEG total medial meniscus replacement, fixed to the tibia via transosseous tunnels and interference screws. Six intact and five implanted right ovine stifle joints were tested for 500 k gait cycles at 1.55 Hz. Implanted stifle joint contact pressures and kinematics in the simulator were compared to the intact group. Contact pressures were measured at 55° flexion using pressure sensitive film inserted sub-meniscally. 3D kinematics were measured optically across two 30-s captures. Results: Peak contact pressures in intact stifles were 3.6 ± 1.0 MPa and 6.0 ± 2.1 MPa in the medial and lateral condyles (p < 0.05) and did not differ significantly from previous studies (p > 0.4). Medial peak implanted pressures were 4.3 ± 2.2 MPa (p > 0.4 versus intact), while lateral peak pressures (9.4 ± 0.8 MPa) were raised post medial compartment implantation (p < 0.01). The range of motion for intact joints was flexion/extension 37° ± 1°, varus/valgus 1° ± 1°, external/internal rotation 5° ± 3°, lateral/medial translation 2 ± 1 mm, anterior/posterior translation 3 ± 1 mm and distraction/compression 1 ± 1 mm. Ovine joint kinematics in the simulator did not differ significantly from published in vivo data for the intact group, and the intact and implanted groups were comparable (p > 0.01), except for in distraction-compression (p < 0.01). Conclusion: These findings show correspondence of the ovine simulator kinematics with in vivo gait parameters. The efficacy of the simulator to evaluate novel treatments was demonstrated by implanting a PVA-PEG hydrogel medial meniscal replacement, which restored the medial peak contact pressures but not lateral. This novel simulator may enable future work on the development of surgical procedures, derisking subsequent work in live animals.

2.
Ultrasound Med Biol ; 50(8): 1108-1121, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38714465

RESUMEN

OBJECTIVE: Ultrasound speckle tracking enables in vivo measurement of soft tissue deformation or strain, providing a non-invasive diagnostic tool to quantify tissue health. However, adoption into new fields is challenging since algorithms need to be tuned with gold-standard reference data that are expensive or impractical to acquire. Here, we present a novel optimization approach that only requires repeated measurements, which can be acquired for new applications where reference data might not be readily available or difficult to get hold of. METHODS: Soft tissue motion was captured using ultrasound for the medial collateral ligament (MCL) of three quasi-statically loaded porcine stifle joints, and medial ligamentous structures of a dynamically loaded human cadaveric knee joint. Using a training subset, custom speckle tracking algorithms were created for the porcine and human ligaments using surrogate optimization, which aimed to maximize repeatability by minimizing the normalized standard deviation of calculated strain maps for repeat measurements. An unseen test subset was then used to validate the tuned algorithms by comparing the ultrasound strains to digital image correlation (DIC) surface strains (porcine specimens) and length change values of the optically tracked ligament attachments (human specimens). RESULTS: After 1500 iterations, the optimization routine based on the porcine and human training data converged to similar values of normalized standard deviations of repeat strain maps (porcine: 0.19, human: 0.26). Ultrasound strains calculated for the independent test sets using the tuned algorithms closely matched the DIC measurements for the porcine quasi-static measurements (R > 0.99, RMSE < 0.59%) and the length change between the tracked ligament attachments for the dynamic human dataset (RMSE < 6.28%). Furthermore, strains in the medial ligamentous structures of the human specimen during flexion showed a strong correlation with anterior/posterior position on the ligaments (R > 0.91). CONCLUSION: Adjusting ultrasound speckle tracking algorithms using an optimization routine based on repeatability led to robust and reliable results with low RMSE for the medial ligamentous structures of the knee. This tool may be equally beneficial in other soft-tissue displacement or strain measurement applications and can assist in the development of novel ultrasonic diagnostic tools to assess soft tissue biomechanics.


Asunto(s)
Algoritmos , Ultrasonografía , Porcinos , Humanos , Animales , Ultrasonografía/métodos , Reproducibilidad de los Resultados , Cadáver , Articulación de la Rodilla/diagnóstico por imagen , Rodilla de Cuadrúpedos/diagnóstico por imagen
3.
Proc Inst Mech Eng H ; 238(5): 471-482, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38644528

RESUMEN

The use of uncemented stems in hip arthroplasty has been increasing, even in osteoporotic patients. The major concerns of uncemented hip-stems, however, are peri-prosthetic fracture, thigh pain, and proximal femoral stress-/strain-shielding. In this study, a novel design of uncemented hip-stem is proposed that will reduce such concerns, improve osseointegration, and benefit both osteoporotic and arthritic patients. The stem has a central titanium alloy core surrounded by a set of radial buttresses that are partly porous titanium, as is the stem tip. The aim of the study was to investigate the mechanical behaviour of the proposed partly-porous design, examining load transfer in the short-term, and comparing its strain-shielding behaviour with a solid metal implant. The long-term effect of implant-induced bone remodelling was also simulated. Computed tomography based three-dimensional finite element models of an intact proximal femur, and the same femur implanted with the proposed design, were developed. Peak hip contact and major muscle forces corresponding to level-walking and stair climbing were applied. The proposed partly-porous design had approximately 50% lower strain-shielding than the solid-metal counterpart. Results of bone remodelling simulation indicated that only 16% of the total bone volume is subjected to reduction of bone density. Strain concentrations were observed in the bone around the stem-tip for both solid and porous implants; however, it was less prominent for the porous design. Lower strain-shielding and reduced bone resorption are advantageous for long-term fixation, and the reduced strain concentration around the stem-tip indicates a lower risk of peri-prosthetic fracture.


Asunto(s)
Análisis de Elementos Finitos , Prótesis de Cadera , Diseño de Prótesis , Estrés Mecánico , Humanos , Artroplastia de Reemplazo de Cadera/instrumentación , Porosidad , Fémur/cirugía , Ensayo de Materiales
4.
Front Bioeng Biotechnol ; 12: 1274496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524193

RESUMEN

Introduction: Arthroplasty-associated bone loss remains a clinical problem: stiff metallic implants disrupt load transfer to bone and, hence, its remodeling stimulus. The aim of this research was to analyze how load transfer to bone is affected by different forms of knee arthroplasty: isolated partial knee arthroplasty (PKA), compartmental arthroplasty [combined partial knee arthroplasty (CPKA), two or more PKAs in the same knee], and total knee arthroplasty (TKA). Methods: An experimentally validated subject-specific finite element model was analyzed native and with medial unicondylar, lateral unicondylar, patellofemoral, bi-unicondylar, medial bicompartmental, lateral bicompartmental, tricompartmental, and total knee arthroplasty. Three load cases were simulated for each: gait, stair ascent, and sit-to-stand. Strain shielding and overstraining were calculated from the differences between the native and implanted states. Results: For gait, the TKA femoral component led to mean strain shielding (30%) more than three times higher than that of PKA (4%-7%) and CPKA (5%-8%). Overstraining was predicted in the proximal tibia (TKA 21%; PKA/CPKA 0%-6%). The variance in the distribution for TKA was an order of magnitude greater than for PKA/CPKA, indicating less physiological load transfer. Only the TKA-implanted femur was sensitive to the load case: for stair ascent and gait, almost the entire distal femur was strain-shielded, whereas during sit-to-stand, the posterior femoral condyles were overstrained. Discussion: TKA requires more bone resection than PKA and CPKA. These finite element analyses suggest that a longer-term benefit for bone is probable as partial and multi-compartmental knee procedures lead to more natural load transfer compared to TKA. High-flexion activity following TKA may be protective of posterior condyle bone resorption, which may help explain why bone loss affects some patients more than others. The male and female bone models used for this research are provided open access to facilitate future research elsewhere.

5.
Am J Sports Med ; 52(6): 1505-1513, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38551132

RESUMEN

BACKGROUND: There is little evidence of the biomechanical performance of medial collateral ligament (MCL) reconstructions for restoring stability to the MCL-deficient knee regarding valgus, external rotation (ER), and anteromedial rotatory instability (AMRI). HYPOTHESIS: A short isometric reconstruction will better restore stability than a longer superficial MCL (sMCL) reconstruction, and an additional deep MCL (dMCL) graft will better control ER and AMRI than single-strand reconstructions. STUDY DESIGN: Controlled laboratory study. METHODS: Nine cadaveric human knees were tested in a kinematics rig that allowed tibial loading while the knee was flexed-extended 0° to 100°. Optical markers were placed on the femur and tibia and displacements were measured using a stereo camera system. The knee was tested intact, and then after MCL (sMCL + dMCL) transection, and loaded in anterior tibial translation (ATT), ER, varus-valgus, and combined ATT + ER (AMRI loading). Five different isometric MCL reconstructions were tested: isolated long sMCL, a short construct, each with and without dMCL addition, and isolated dMCL reconstruction, using an 8 mm-wide synthetic graft. RESULTS: MCL deficiency caused an increase in ER of 4° at 0° of flexion (P = .271) up to 14° at 100° of flexion (P = .002), and valgus laxity increased by 5° to 8° between 0° and 100° of flexion (P < .024 at 0°-90°). ATT did not increase significantly in isolated MCL deficiency (P > .999). All 5 reconstructions restored native stability across the arc of flexion apart from the isolated long sMCL, which demonstrated residual ER instability (P≤ .047 vs other reconstructions). CONCLUSION: All tested techniques apart from the isolated long sMCL graft are satisfactory in the context of restoring the valgus, ER, and AMRI stability to the MCL-deficient knee in a cadaveric model. CLINICAL RELEVANCE: Contemporary MCL reconstruction techniques fail to control ER and therefore AMRI as they use a long sMCL graft and do not address the dMCL. This study compares 5 MCL reconstruction techniques. Both long and short isometric constructs other than the long sMCL achieved native stability in valgus and ER/AMRI. Double-strand reconstructions (sMCL + dMCL) tended to provide more stability. This study shows which reconstructions demonstrate the best biomechanical performance, informs surgical reconstruction techniques for AMRI, and questions the efficacy of current popular techniques.


Asunto(s)
Cadáver , Inestabilidad de la Articulación , Ligamento Colateral Medial de la Rodilla , Humanos , Fenómenos Biomecánicos , Ligamento Colateral Medial de la Rodilla/cirugía , Inestabilidad de la Articulación/cirugía , Inestabilidad de la Articulación/fisiopatología , Masculino , Anciano , Persona de Mediana Edad , Procedimientos de Cirugía Plástica/métodos , Femenino , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/fisiología , Rotación
6.
Am J Sports Med ; 52(4): 968-976, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38343203

RESUMEN

BACKGROUND: Historical MCL (medial collateral ligament) reconstruction (MCLR) techniques have focused on the superficial MCL (sMCL) to restore valgus stability while frequently ignoring the importance of the deep MCL (dMCL) in controlling tibial external rotation. The recent recognition of the medial ligament complex importance has multiple studies revisiting medial anatomy and questioning contemporary MCLR techniques. PURPOSE: To assess whether (1) an isolated sMCL reconstruction (sMCLR), (2) an isolated dMCL reconstruction (dMCLR), or (3) a novel single-strand short isometric construct (SIC) would restore translational and rotational stability to a knee with a dMCL and sMCL injury. STUDY DESIGN: Controlled laboratory study. METHODS: Biomechanical testing was performed on 14 fresh-frozen cadaveric knee specimens using a custom multiaxial knee activity simulator. The specimens were divided into 2 groups. The first group was tested in 4 states: intact, after sectioning the sMCL and dMCL, isolated sMCLR, and isolated dMCLR. The second group was tested in 3 states: intact, after sectioning the sMCL and dMCL, and after single-strand SIC reconstruction (SICR). In each state, 4 loading conditions were applied at 0°, 20°, 40°, 60°, and 90° of knee flexion: 8-N·m valgus torque, 5-N·m external rotation torque, 90-N anterior drawer, and combined 90-N anterior drawer plus 5-N·m tibial external rotation torque. Anterior translation, valgus rotation, and external rotation of the knee were measured for each state and loading condition using an optical motion capture system. RESULTS: sMCL and dMCL transection resulted in increased laxity for all loading conditions at all flexion angles. Isolated dMCLR restored external rotation stability to intact levels throughout all degrees of flexion, yet valgus stability was restored only at 0° of flexion. Isolated sMCLR restored valgus and external rotation stability at 0°, 20°, and 40° of flexion but not at 60° or 90° of flexion. Single-strand SICR restored valgus and external rotation stability at all flexion angles. In the combined anterior drawer plus external rotation test, isolated dMCL and single-strand SICR restored stability to the intact level at all flexion angles, while the isolated sMCL restored stability at 20° and 40° of flexion but not at 60° or 90° of flexion. CONCLUSION: In the cadaveric model, single-strand SICR restored valgus and rotational stability throughout the range of motion. dMCLR restored rotational stability to the knee throughout the range of motion but did not restore valgus stability. Isolated sMCLR restored external rotation and valgus stability in early flexion. CLINICAL RELEVANCE: In patients with anteromedial rotatory instability in the knee, neither an sMCLR nor a dMCLR is sufficient to restore stability.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ligamentos Colaterales , Inestabilidad de la Articulación , Adulto , Humanos , Fenómenos Biomecánicos , Inestabilidad de la Articulación/cirugía , Cadáver , Articulación de la Rodilla/cirugía , Lesiones del Ligamento Cruzado Anterior/cirugía , Rango del Movimiento Articular , Ligamentos Colaterales/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...