Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Comput Biol Chem ; 111: 108097, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38772048

RESUMEN

A new series of 2H-chromene-based sulfonamide derivatives 3-12 has been synthesized and characterized using different spectroscopic techniques. The synthesized 2H-chromenes were synthesized by reacting activated methylene with 5-(piperidin-1-ylsulfonyl)salicylaldehyde through one-step condensation followed by intramolecular cyclization. Virtual screening of the designed molecules on α-glucosidase enzymes (PDB: 3W37 and 3A4A) exhibited good binding affinity suggesting that these derivatives may be potential α-glucosidase inhibitors. In-vitro α-glucosidase activity was conducted firstly at 100 µg/mL, and the results demonstrated good inhibitory potency with values ranging from 90.6% to 96.3% compared to IP = 95.8% for Acarbose. Furthermore, the IC50 values were determined, and the designed derivatives exhibited inhibitory potency less than 11 µg/mL. Surprisingly, two chromene derivatives 6 and 10 showed the highest potency with IC50 values of 0.975 ± 0.04 and 0.584 ± 0.02 µg/mL, respectively, compared to Acarbose (IC50 = 0.805 ± 0.03 µg/mL). Moreover, our work was extended to evaluate the in-vitro α-amylase and PPAR-γ activity as additional targets for diabetic activity. The results exhibited moderate activity on α-amylase and potency as PPAR-γ agonist making it a multiplet antidiabetic target. The most active 2H-chromenes 6 and 10 exhibited significant activity to PPAR-γ with IC50 values of 3.453 ± 0.14 and 4.653 ± 0.04 µg/mL compared to Pioglitazone (IC50 = 4.884±0.29 µg/mL) indicating that these derivatives improve insulin sensitivity by stimulating the production of small insulin-sensitive adipocytes. In-silico ADME profile analysis indicated compliance with Lipinski's and Veber's rules with excellent oral bioavailability properties. Finally, the docking simulation was conducted to explain the expected binding mode and binding affinity.

2.
RSC Adv ; 14(22): 15691-15705, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38746843

RESUMEN

A new series of 2-imino or 2-oxo-2H-chromene-6-sulfonamide derivatives 2-9 with potential anti-diabetic activity were designed and synthesized. The new 6-sulfonamide chromenes were synthesized by reacting 3-formyl-4-hydroxybenzenesulfonyl chloride with activated methylene derivatives in the presence of ammonium acetate as a catalyst. The structure of the products was confirmed by spectroscopic analysis. All the designed derivatives 2-9 were evaluated for their activity against α-amylase and exhibited inhibitory percentage values higher than 93% at 100 µg mL-1. Additionally, the IC50 values represented a variable degree of activity with two derivatives 2 and 9 exhibiting the most promising derivative results with IC50 values of 1.76 ± 0.01 and 1.08 ± 0.02 µM, respectively, compared to Acarbose (IC50 = 0.43 ± 0.01 µM). Additionally, these derivatives showed potency against the α-glucosidase enzyme with IC50 values of 0.548 ± 0.02 and 2.44 ± 0.09 µg mL-1, compared to Acarbose (0.604 ± 0.02 µg mL-1). Moreover, the in vitro PPAR-γ transactivation assay revealed that chromene-6-sulfonamide derivatives 2 and 9 exhibited potential PPAR-γ activity with IC50 values of 3.152 ± 0.03 and 3.706 ± 0.32 µg mL-1, respectively, compared to Pioglitazone (4.884 ± 0.29 µg mL-1). This indicates that these derivatives have insulin sensitivity and glucose metabolism activity. The in silico ADMET prediction showed that these derivatives have an acceptable range of oral bioavailability, drug-likeness, and a safe toxicity profile, including being non-cytotoxic, non-mutagenic, non-immunotoxic, and non-carcinogenic. Finally, computational docking analysis demonstrated the ability of these derivatives to interact with α-amylase, α-glucosidase, and PPAR-γ enzymes, with confirmed successful placement due to good binding energy values and various interactions within the pocket.

3.
Sci Rep ; 13(1): 22792, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38123716

RESUMEN

A new chitosan Schiff base was developed via the reaction of chitosan (CH) with 2-chloro-3-formyl-7-ethoxy quinoline (Q) derivative. The alteration in the chemical structure and morphology of CHQ derivative was confirmed by 1H NMR, FT-IR spectroscopy and SEM analysis. The antibacterial activity was considerably promoted with increasing quinoline concentration up to 1 M with maximal inhibition reached 96 and 77% against Staphylococcus haemolyticus and Escherichia coli, respectively. Additionally, CHQ derivative afforded higher ABTS·+ radical scavenging activity reached 59% compared to 13% for native chitosan, approving its acceptable antioxidant activity. Moreover, the developed CHQ derivative can stimulate the glucose uptake in HepG-2 and yeast cells, while better inhibition of α-amylase and α-glucosidase was accomplished with maximum values of 99.78 and 92.10%, respectively. Furthermore, the molecular docking simulation clarified the binding mode of CHQ derivative inside the active site of α-amylase and α-glucosidase, suggesting its potential use as diabetes mellitus drug. The DFT calculations indicated an improvement in the electronic properties of CHQ with a lower energy band gap reached 4.05eV compared to 5.94eV for CH. The cytotoxicity assay revealed the safety of CHQ towards normal HSF cells, hypothesizing its possible application as non-toxic antibacterial, antioxidant, and antidiabetic agent for biomedical applications.


Asunto(s)
Quitosano , Quinolinas , Antioxidantes/farmacología , Antioxidantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Quitosano/química , Simulación del Acoplamiento Molecular , Bases de Schiff/farmacología , Bases de Schiff/química , Espectroscopía Infrarroja por Transformada de Fourier , alfa-Glucosidasas/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , alfa-Amilasas/metabolismo
4.
RSC Adv ; 13(45): 31908-31924, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37915441

RESUMEN

Vascular endothelial growth factor receptor-2 is a vital target for therapeutic mediation in various types of cancer. This study was aimed at exploring the cytotoxic activity of seventeen novel quinoxaline-3-propanamides against colon cancer (HCT-116) and breast cancer (MCF-7) using MTT assay. Results revealed that compounds 8, 9, and 14 elicited higher cytotoxicity than the reference drugs, doxorubicin (DOX) and sorafenib. Interestingly, they are more selective for HCT-116 (SI 11.98-19.97) and MCF-7 (SI 12.44-23.87) compared to DOX (SI HCT-116 0.72 and MCF-7 0.9). These compounds effectively reduced vascular endothelial growth factor receptor-2; among them, compound 14 displayed similar VEGFR-2 inhibitory activity to sorafenib (IC50 0.076 M). The ability of 14 to inhibit angiogenesis was demonstrated by a reduction in VEGF-A level compared to control. Furthermore, it induced a significant increase in the percentage of cells at pre-G1 phase by almost 1.38 folds (which could be indicative of apoptosis) and an increase in G2/M by 3.59 folds compared to the control experiment. A flow cytometry assay revealed that compound 14 triggered apoptosis via the programmed cell death and necrotic pathways. Besides, it caused a remarkable increase in apoptotic markers, i.e., caspase-3 p53 and BAX. When compared to the control, significant increase in the expression levels of caspase-3 from 47.88 to 423.10 and p53 from 22.19 to 345.83 pg per ml in MCF-7 cells. As well, it increased the proapoptotic protein BAX by 4.3 times while lowering the antiapoptotic marker BCL2 by 0.45 fold. Docking studies further supported the mechanism, where compound 14 showed good binding to the essential amino acids in the active site of VEGFR-2. Pharmacokinetic properties showed the privilege of these hits over sunitinib: they are not substrates of P-gp protein; this suggests that they have less chance to efflux out of the cell, committing maximum effect; and in addition, they do not allow permeation to the BBB.

5.
RSC Adv ; 13(39): 27363-27384, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37711372

RESUMEN

The current trend in fighting bacteria is attacking the virulence and quorum-sensing (QS) signals that control bacterial communication and virulence factors, especially biofilm formation. This study reports new Schiff bases and tetracyclic rings based on a pyridine pharmacophore by two methods: a green approach using CAN and a conventional method. The structure of designed derivatives was confirmed using different spectroscopies (IR and 1H/13C NMR) and elemental analysis. The designed derivatives exhibited good to moderate inhibition zones against bacterial and fungal pathogens. In addition, six compounds 2a,b, 3a,b, and 6a,b displayed potency against tested pathogens with eligible MIC and MBC values compared to standard antimicrobial agents. Compound 2a displayed MIC values of 15.6 µg mL-1 compared to Gentamicin (MIC = 250 µg mL-1 against K. pneumoniae), while compound 6b exhibited super-potent activity against P. aeruginosa, and K. pneumoniae with MIC values of 62.5 and 125 µg mL-1, as well as MBC values of 31.25 and 15.6 µg mL-1 compared to Gentamicin (MIC = 250 and 125 µg mL-1 and MBC = 62.5 µg mL-1), respectively. Surprisingly, these six derivatives revealed bactericidal and fungicidal potency and remarkable anti-biofilm activity that could significantly reduce the biofilm formation against MRSA, E. coli, P. aeruginosa, and C. albicans. Furthermore, the most active derivatives reduced the LasR gene's production between 10-40% at 1/8 MICs compared with untreated P. aeruginosa. Besides, they demonstrated promising safety profile on Vero cells (normal cell lines) with IC50 values ranging between (175.17 ± 3.49 to 344.27 ± 3.81 µg mL-1). In addition, the in silico ADMET prediction was carried out and the results revealed that these compounds could be used with oral bioavailability with low toxicity prediction when administered as a candidate drug. Finally, the molecular docking simulation was performed inside LasR and predicted the key binding interactions responsible for the activity that corroborated the biological results.

6.
Bioorg Chem ; 139: 106735, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37531818

RESUMEN

Vascular endothelial growth factor receptor-2 is a dynamic target for therapeutic intervention in various types of cancer. This study was aimed at exploring the VEGFR-2 inhibitory activity of a novel library of quinoxalin-2-one derivatives such as 3-furoquinoxaline carboxamides, 3-pyrazolylquinoxalines, and 3-pyridopyrimidyl-quinoxalines. Among them, 6c, 7a, and 7d-f produced remarkable cytotoxicity against HCT-116 (IC50's 4.28-9.31 µM) and MCF-7 (IC50's 3.57-7.57 µM) cell lines using the MTT assay and doxorubicin (DOX) as a reference standard. Interestingly, results of cytotoxicity towards the human fibroblast cell line WI38 revealed that these hits demonstrated higher selectivity indices towards both HCT-116 (SI 8.69-23.19) and MCF-7 (SI 9.48-27.80) than DOX, SI 0.72 and 0.90, respectively. Then, these hits were subjected to a mechanistic study; they showed direct inhibition of VEGFR-2. Impressively, compound 7f displayed 1.2 times the VEGFR-2 inhibitory activity of sorafenib. The antiangiogenic potential of 7f was proved via lowering the level of VEGF-A, than that of control. It as well, exhibited scratch closure percent of 61.8%, compared with 74.5% of control at 48 hrs, indicating the potential anti-migratory effect of the compound 7f. It significantly increased the expression of tumor suppressor gene (p53) on MCF-7 cells by almost 18 folds and upregulated the caspase-3 level by 10.7 folds, compared to the control. Cell cycle analysis revealed cell cycle arrest at G2/M together with a PreG increase which indicated apoptosis induction potential. Annexin V-FITC apoptosis results proposed the two modes of cell death (apoptosis and necrosis) as an inherent mechanism of cytotoxicity of compound 7f. Molecular docking further supported the mechanism showing the affinity of target compounds for VEGFR-2 active site. Moreover, physicochemical and drug-like properties were assessed from the ADME properties.


Asunto(s)
Antineoplásicos , Quinoxalinas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular , Doxorrubicina/farmacología , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Quinoxalinas/farmacología , Relación Estructura-Actividad , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
7.
RSC Adv ; 13(18): 12589-12608, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37101951

RESUMEN

A new series of 6-(pyrrolidin-1-ylsulfonyl)-[1,3]dithiolo[4,5-b]quinoxaline-2-ylidines 10a-f, 12, 14, 16, and 18 were designed, synthesized, and evaluated for their in vitro anticancer activity. The structures of the novel compounds were systematically characterized by 1H NMR, 13C NMR, and elemental analysis. The synthesized derivatives were evaluated for their in vitro antiproliferative activity against three human cancer cell lines (HepG-2, HCT-116, and MCF-7) with more sensitivity to MCF-7. Moreover, three derivatives 10c, 10f, and 12 were the most promising candidates with sub-micromole values. These derivatives were further evaluated against MDA-MB-231, and the results displayed significant IC50 values ranging from 2.26 ± 0.1 to 10.46 ± 0.8 µM and showed low cellular cytotoxicity against WI-38. Surprisingly, the most active derivative 12 revealed sensitivity towards the breast cell lines MCF-7 (IC50 = 3.82 ± 0.2 µM) and MDA-MB-231 (IC50 = 2.26 ± 0.1 µM) compared with doxorubicin (IC50 = 4.17 ± 0.2 and 3.18 ± 0.1 M). Cell cycle analysis showed that compound 12 arrests and inhibits the growth of MCF-7 cells in the S phase with values of 48.16% compared with the untreated control 29.79% and exhibited a significantly higher apoptotic effect in MCF-7 with a value of 42.08% compared to control cell at 1.84%. Furthermore, compound 12 decreased Bcl-2 protein 0.368-fold and activation on pro-apoptotic genes Bax and P53 by 3.97 and 4.97 folds, respectively, in MCF-7 cells. Compound 12 exhibited higher inhibitory activity to EGFRWt, EGFRL858R, and VEGFR-2 with IC50 values (0.19 ± 0.009, 0.026 ± 0.001, and 0.42 ± 0.021 µM) compared with erlotinib (IC50 = 0.037 ± 0.002 and 0.026 ± 0.001 µM) and sorafenib (IC50 = 0.035 ± 0.002 µM). Finally, in silico ADMET prediction presented that 1,3-dithiolo[4,5-b]quinoxaline derivative 12 obeys the Lipinski rule of five and the Veber rule with no PAINs alarms and moderately soluble properties. Additionally, toxicity prediction revealed that compound 12 demonstrated inactivity to hepatotoxic carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity. Moreover, molecular docking studies showed good binding affinity with lower binding energy inside the active site of Bcl-2 (PDB: 4AQ3), EGFR (PDB: 1M17), and VEGFR (PDB: 4ASD).

8.
RSC Adv ; 13(15): 10440-10458, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37020892

RESUMEN

Developing new agents for cancer treatment remains a top priority because it is one of the deadliest worldwide. A new series of 2-oxo-pyridine and 1'H-spiro-pyridine derivatives were designed and synthesized based on an N-(ethyl benzoate) moiety. The structure of the designed derivatives was confirmed by different spectroscopic techniques (FT-IR and NMR) and elemental analysis and then evaluated as antiproliferative against HepG-2 and Caco-2 cell lines compared with Doxorubicin. The spiro-pyridine derivatives 5, 7, and 8 exhibited a remarkably higher activity against Caco-2 cell lines than that of other derivatives. Additionally, these derivatives exhibited activation in the Bax and suppressed Bcl-2 expression with variable degrees. Interestingly, compound 7 showed the lowest cytotoxicity value on Caco-2 cells (IC50 = 7.83 ± 0.50 µM) compared with Doxorubicin (IC50 = 12.49 ± 1.10 µM). Additionally, this compound showed activation of the Bax gene (7.508-fold) and suppressed Bcl-2 (0.194-fold) compared to untreated Caco-2 cells, as revealed by the qRT-PCR technique. Moreover, compound 7 could inhibit EGFR and VEGFR-2 with sub-micromole values of 0.124 µM and 0.221 µM compared with Erlotinib (IC50 = 0.033 µM) and Sorafenib (IC50 = 0.043 µM), respectively. Further, cell cycle and apoptosis analysis demonstrated that compound 7 promoted apoptosis by increasing the apoptosis rate from 1.92 to 42.35% and the S cell accumulation ratio from 31.18 to 42.07% compared to untreated Caco-2 cells. Finally, the most active compound 7 showed good drug-likeness and toxicity profiles. Besides, molecular docking studies were performed to determine the binding mode, which is in agreement with the in vitro results.

9.
Antibiotics (Basel) ; 12(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36671329

RESUMEN

Nowadays, searching for new anti-infective agents with diverse mechanisms of action has become necessary. In this study, 16 pyrazole and pyrazolo[1,5-a]pyrimidine derivatives were synthesized and assessed for their preliminary antibacterial and antibiofilm activities. All these derivatives were initially screened for their antibacterial activity against six clinically isolated multidrug resistance by agar well-diffusion and broth microdilution methods. The initial screening presented significant antibacterial activity with a bactericidal effect for five compounds, namely 3a, 5a, 6, 9a, and 10a, compared with Erythromycin and Amikacin. These five derivatives were further evaluated for their antibiofilm activity against both S. aureus and P. aeruginosa, which showed strong biofilm-forming activity at their MICs by >60%. The SEM analysis confirmed the biofilm disruption in the presence of these derivatives. Furthermore, anti-QS activity was observed for the five hybrids at their sub-MICs, as indicated by the visible halo zone. In addition, the presence of the most active derivatives reduces the violacein production by CV026, confirming that these compounds yielded anti-QS activity. Furthermore, these compounds showed strong inhibitory action against human carbonic anhydrase (hCA-I and hCA-II) isoforms with IC50 values ranging between 92.34 and 168.84 nM and between 73.2 and 161.22 nM, respectively. Finally, radiosterilization, ADMET, and a docking simulation were performed.

10.
Chem Biol Drug Des ; 101(2): 245-270, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36305722

RESUMEN

This study aimed to synthesize new potent quinoline derivatives based on hydrazone moieties and evaluate their antimicrobial activity. The newly synthesized hydrazono-quinoline derivatives 2, 5a, 9, and 10b showed the highest antimicrobial activity with MIC values ≤1.0 µg/ml against bacteria and ≤8.0 µg/ml against the fungi. Further, these derivatives exhibited bactericidal and fungicidal effects with MBC/MIC and MFC/MIC ratio ≤4. Surprisingly, the most active compounds displayed good inhibition to biofilm formation with MBEC values ranging between (40.0 ± 10.0 - 230.0 ± 31.0) and (67.0 ± 24.0 - 347.0 ± 15.0) µg/ml against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. The hemolytic assays confirmed that the hydrazono-quinoline derivatives are non-toxic with low % lysis values ranging from 4.62% to 14.4% at a 1.0 mg/ml concentration. Besides, compound 5a exhibited the lowest hemolytic activity value of ~4.62%. Furthermore, the study suggests that the hydrazono-quinoline analogs exert their antibacterial activity as dual inhibitors for DNA gyrase and DNA topoisomerase IV enzymes with IC50 values ranging between (4.56 ± 0.3 - 21.67 ± 0.45) and (6.77 ± 0.4 - 20.41 ± 0.32) µM, respectively. Additionally, the recent work advocated that compound 5a showed the reference SAL at the É£-radiation dose of 10.0 kGy in the sterilization process without affecting its chemical structure. Finally, the in silico drug-likeness, toxicity properties, and molecular docking simulation were performed. Besides, the result exhibited good oral-bioavailability, lower toxicity prediction, and lower binding energy with good binding mode rather than the positive control.


Asunto(s)
Antiinfecciosos , Girasa de ADN , Simulación del Acoplamiento Molecular , Girasa de ADN/metabolismo , Topoisomerasa de ADN IV/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Estructura Molecular
11.
Bioorg Chem ; 131: 106307, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36481380

RESUMEN

Multi-drug resistant microbes have become a severe threat to human health and arise a worldwide concern. A total of fifteen spiro-1,3-dithiinoindenoquinoxaline derivatives 2-7 were synthesized and evaluated for their biological activities against five standard and MDRB pathogens. The MIC and MBC/MFC for the most active derivatives were determined in vitro via broth microdilution assay. These derivatives showed significant activity against the tested strains with microbicidal behavior, with compound 4b as the most active compound (MIC range between 0.06 and 0.25 µg/mL for bacteria strains and MIC = 0.25 µg/mL for C. albicans). The most active spiro-1,3-dithiinoindenoquinoxaline derivatives were able to inhibit the activity of SrtA with IC50 values ranging from 22.15 ± 0.4 µM to 37.12 ± 1.4 µM. In addition, the active spiro-1,3-dithiinoindenoquinoxaline attenuated the in vitro virulence-related phenotype of SrtA by weakening the adherence of S. aureus to fibrinogen and reducing the biofilm formation. Surprisingly, compound 4b revealed potent SrtA inhibitory activity with IC50 = 22.15 µM, inhibiting the adhesion of S. aureus with 39.22 ± 0.15 % compared with untreated 9.43 ± 1.52 %, and showed a reduction in the biofilm biomass of S. aureus with 32.27 ± 0.52 %. We further investigated the effect of gamma radiation as a sterilization method on the microbial load and found that a dose of 5 kGy was sufficient to eradicate the microbial load. The quantum chemical studies exhibited that the tested derivatives have a small energy band gap (ΔE = -2.95 to -3.61 eV) and therefore exert potent bioactivity by interacting with receptors more stabilizing.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Humanos , Quinoxalinas/farmacología , Proteínas Bacterianas , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
12.
Arch Pharm (Weinheim) ; 356(2): e2200395, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36336646

RESUMEN

Searching for effective and selective anti-inflammatory agents, our study involved designing and synthesizing new pyrazole and pyrazolo[1,5-a]pyrimidine derivatives 4-11. The structures of the synthesized derivatives were confirmed using different spectroscopic techniques. Virtual screening was achieved for the newly designed derivatives using in silico docking simulation inside the active sites of four proteins classified as two cyclooxygenases (COX)-1 (PDB: 3KK6 and 4OIZ) and two COX-2 (PBD: 1CX2 and 3LN1). Among them, six derivatives 4c, 5b, 6a, 7a, 7b, and 10b displayed the highest binding energy. These derivatives were evaluated for their in vitro COX-1 and COX-2 inhibitory activities and their selectivity indexes were calculated. Additionally, these derivatives displayed IC50 values ranging between 4.909 ± 0.25 and 57.53 ± 2.91 µM, and 3.289 ± 0.14 and 124 ± 5.32 µM, against COX-1 and COX-2, respectively. Furthermore, the tested derivatives were found to have selective inhibitory activity on the COX-2 enzyme. Surprisingly, the two pyrazole derivatives 4c and 5b were found to be the most active, with IC50 values of 9.835 ± 0.50 and 4.909 ± 0.25 µM and 4.597 ± 0.20 and 3.289 ± 0.14 µM compared with meloxicam (1.879 ± 0.1 and 5.409 ± 0.23 µM) and celecoxib (5.439 ± 0.28 and 2.164 ± 0.09 µM) against COX-1/-2, respectively. Besides, two pyrazole derivatives, 4c and 5b, displayed a COX-1/COX-2 SI of 2.14 and 1.49. Computational techniques such as molecular docking, density function theory (DFT) calculation, and chemical absorption, distribution, metabolism, excretion, and toxicity evaluation were applied to explain the molecules' binding mode, chemical nature, drug likeness, and toxicity prediction.


Asunto(s)
Inhibidores de la Ciclooxigenasa , Pirazoles , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Ciclooxigenasa/química , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Ciclooxigenasa 1/metabolismo , Pirazoles/farmacología , Pirazoles/química , Pirimidinas , Inhibidores de la Ciclooxigenasa 2/farmacología , Diseño de Fármacos
13.
Drug Dev Res ; 83(6): 1305-1330, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35716118

RESUMEN

Developing novel antimicrobial agents has become a necessitate due to the increasing rate of microbial resistance to antibiotics. All the newly adamantane derivatives were evaluated for their antimicrobial activities against six MDR clinical pathogenic isolates. The results exhibited that 13 compounds have from potent to good activity. Among those, five derivatives (6, 7, 9, 14a, and 14b) displayed the potent activities against the different isolates tested (MIC < 0.25 µg/ml with bacteria and <8 µg/ml with fungi) compared with Ciprofloxacin (CIP) and Fluconazole (FCA). Additionally, the potent adamantanes showed bactericidal and fungicidal effects based on (MBCs and MFCs) and the time-kill assay. The most active adamantane derivatives 7 and 14b exhibited a synergistic effect of ΣFIC ≤ 0.5 with CIP and FCA against the bacterial and fungal isolates. Moreover, no antagonistic effect appeared for the tested derivatives. Additionally, the interaction of DNA gyrase and topoisomerase IV enzymes with the compounds 6, 7, 9, 14a, and 14b exhibited potent antimicrobial activity using in vitro biochemical assays and gel-based DNA-supercoiling inhibition method. The activity of DNA gyrase and topoisomerase IV enzymes showed inhibitory activity (IC50 ) of 6.20 µM and 9.40 µM with compound 7 and 10.14 µM and 13.28 µM with compound 14b, respectively. Surprisingly, exposing compound 7 to gamma irradiation sterilized and increased its activity. Finally, the in-silico analysis predicted that the most active derivatives had good drug-likeness and safe properties. Besides, molecular docking and quantum chemical studies revealed several important interactions inside the active sites and showed the structural features necessary for activity.


Asunto(s)
Adamantano , Antiinfecciosos , Adamantano/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Bacterias , Ciprofloxacina/farmacología , Girasa de ADN/genética , Girasa de ADN/farmacología , Topoisomerasa de ADN IV/genética , Topoisomerasa de ADN IV/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología
14.
Comput Biol Med ; 145: 105473, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35395516

RESUMEN

One of the interesting research fields is developing and assessing novel metal-containing medications. A new isatin-3-thiosemicarbazone derivative 4 was synthesized by two different methods based on hydrazone derivatives 2 and 3. Additionally, the chelation of thiosemicarbazone with copper (II) and zinc (II) forms a monobasic tridentate (ONS) complex with two five-member rings and a tetrahedral geometry structure. The structure of synthesized complexes was characterized using elemental analysis, FT-IR, mass spectra, and 1H/13C NMR. Thermogravimetric analysis revealed the upgrading of the thermal stability of metal complexes compared to their thiosemicarbazone ligand. The stoichiometric ratio of the coordination confirmed the formation of 1:1 (M: L) stoichiometry. In vitro antimicrobial activity was screened against two gram-positive, two gram-negative, and one fungal strain. Both ligand 4 and Zn complex 6 displayed high antimicrobial activity compared with copper complex 5 based on the zone of inhibition. Further, MIC and MBC were determined for both zinc and ligand. The zinc complex 6 displayed excellent antimicrobial activity with (MIC = 3.9-27.77 µg/mL) against bacterial strains and (MIC = 7.81 µg/mL) against C. albicans, as well as exhibited MBC values ranging between (MBC = 6.51-45.58 µg/mL) and (MFC = 13.58 µg/mL), respectively, and demonstrated bactericidal and fungicidal behavior. The in-silico ADMET study for ligand and two complexes were determined and showed non-AMES toxicity, non-carcinogenic, and obey the rule of five. A comparative docking study provided more insight into the binding mechanisms and suggested that antimicrobial activity may be due to inhibition of different targets.


Asunto(s)
Antiinfecciosos , Tiosemicarbazonas , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Cobre/química , Ligandos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Zinc/química
15.
Biomedicines ; 10(3)2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35327524

RESUMEN

The current study investigated the cytotoxic effect of ten sulfonamide-derived isatins, following molecular hybridization, based on the association principles, on hepatocellular carcinoma (HCC) HepG2 and Huh7 cell lines, compared for safety using human normal retina pigmented epithelial (RPE-1) cells. The ten compounds showed variable in vitro cytotoxicity on HepG2 and Huh7 cells, using the MTT assay. Four compounds (4/10) were highly cytotoxic to both HepG2 and HuH7. However, only 3 of these 4 were of the highest safety margin on RPE-1 cells in vitro and in the in vivo acute (14-day) oral toxicity study. These later, superior three compounds' structures are 3-hydroxy-3-(2-oxo-2-(p-tolyl)ethyl)-5-(piperidin-1-ylsulfonyl)indolin-2-one (3a), N-(4-(2-(2-oxo-5-(piperidin-1-ylsulfonyl)indolin-3-ylidene)acetyl)phenyl)acetamide (4b), and N-(3-(2-(2-oxo-5-(piperidin-1-ylsulfonyl)indolin-3-ylidene)acetyl)phenyl)acetamide (4c). The half-maximal inhibitory concentration (IC50) of the tested compounds (3a, 4b, and 4c) on HepG2 cells were approximately 16.8, 44.7, and 39.7 µM, respectively. The 3a, 4b, and 4c compounds significantly decreased the angiogenic marker epithelial growth factor receptor (EGFR) level and that was further confirmed via molecular docking inside the EFGR active site (PDB: 1M17). The binding free energies ranged between -19.21 and -21.74 Kcal/mol compared to Erlotinib (-25.65 Kcal/mol). The most promising compounds, 3a, 4b, and 4c, showed variable anticancer potential on "hallmarks of cancer", significant cytotoxicity, and apoptotic anti-angiogenic and anti-invasive effects, manifested as suppression of Bcl-2, urokinase plasminogen activation, and heparanase expression in HepG2-treated cells' lysate, compared to non-treated HepG2 cells. In conclusion, compound "3a" is highly comparable to doxorubicin regarding cell cycle arrest at G2/M, the pre-G0 phases and early and late apoptosis induction and is comparable to Erlotinib regarding binding to EGFR active site. Therefore, the current study could suggest that compound "3a" is, hopefully, the most safe and active synthesized isatin sulfonamide derivative for HCC management.

16.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35337173

RESUMEN

The first outbreak in Wuhan, China, in December 2019 was reported about severe acute coronaviral syndrome 2 (SARS-CoV-2). The global coronavirus disease 2019 (COVID-19) pandemic in 2020 resulted in an extremely high potential for dissemination. No drugs are validated in large-scale studies for significant effectiveness in the clinical treatment of COVID-19 patients, despite the worsening trends of COVID-19. This study aims to design a simple and efficient cyclo-condensation reaction of 6-aminouracil derivatives 2a-e and isatin derivatives 1a-c to synthesize spiro-oxindoles 3a-d, 4a-e, and 5a-e. All compounds were tested in vitro against the SARS-CoV-2. Four spiro[indoline-3,5'-pyrido[2,3-d:6,5-d']dipyrimidine derivatives 3a, 4b, 4d, and 4e showed high activities against the SARS-CoV-2 in plaque reduction assay and were subjected to further RNA-dependent-RNA-polymerase (RdRp) and spike glycoprotein inhibition assay investigations. The four compounds exhibited potent inhibitory activity ranging from 40.23 ± 0.09 to 44.90 ± 0.08 nM and 40.27 ± 0.17 to 44.83 ± 0.16 nM, respectively, when compared with chloroquine as a reference standard, which showed 45 ± 0.02 and 45 ± 0.06 nM against RdRp and spike glycoprotein, respectively. The computational study involving the docking studies of the binding mode inside two proteins ((RdRp) (PDB: 6m71), and (SGp) (PDB: 6VXX)) and geometrical optimization used to generate some molecular parameters were performed for the most active hybrids.

17.
ACS Omega ; 7(6): 4970-4990, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35187315

RESUMEN

A series of thiazol-4-one/thiophene-bearing pyrazole derivatives as pharmacologically attractive cores were initially synthesized using a hybridization approach. All structures were confirmed using spectra analysis techniques (IR, 1H NMR, and 13C NMR). In vitro antimicrobial activities, including the minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and time-kill assay, were evaluated for the most active derivatives 4a, 5a, 7b, 10, and 13. These derivatives were significantly active against the tested pathogens, with compound 7b as the most active derivative (MIC values range from 0.22 to 0.25 µg/mL). In the MBC and MFC, the active target pyrazole derivatives showed -cidal activities toward the pathogenic isolates. Further, the inhibition of biofilm formation of Staphylococcus aureus and Staphylococcus epidermidis was also carried out. Additionally, these derivatives displayed significant antibiofilm potential with a superior % reduction in the biofilm formation compared with Ciprofloxacin. The target derivatives behaved synergistically with Ciprofloxacin and Ketoconazole, reducing their MICs. Hemolytic results revealed that these derivatives were nontoxic with a significantly low hemolytic activity (%lysis range from 3.23 to 15.22%) compared with Triton X-100 and showed noncytotoxicity activity with IC50 values > 60 µM. In addition, these derivatives proved to be active DNA gyrase and DHFR inhibitors with IC50 ranging between 12.27-31.64 and 0.52-2.67 µM, respectively. Furthermore, compound 7b showed bactericidal activity at different concentrations in the time-kill assay. Moreover, a gamma radiation dose of 10.0 kGy was efficient for sterilizing compound 7b and enhancing its antimicrobial activity. Finally, molecular docking simulation of the most promising derivatives exhibited good binding energy with different interactions.

18.
Arch Pharm (Weinheim) ; 355(5): e2100454, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35174895

RESUMEN

Cancer is the world's foremost cause of death. There are over 100 different forms of cancer. Cancers are frequently named after the organs or tissues in which they develop. As a part of our aim to develop promising anticancer agents, a series of new indeno[1,2-b]quinoxaline derivatives were synthesized. All of the synthesized compounds were tested for anticancer activity in vitro in three human cancer cell lines: the HCT-116 colon cancer cell line, the HepG-2 liver cancer cell line, and the MCF-7 breast cancer cell line. Among the tested derivatives, 2, 3, 5, 12, 21, and 22 showed exceptional antiproliferative activities against the three tested cell lines compared to the reference standard imatinib. These compounds were, therefore, selected for further investigations. Evaluation of their cytotoxicity against a normal human cell line (WI-38) was performed, to ensure their safety and selectivity (IC50 > 92 µM). Then, induction of apoptosis by the most active compounds was found to be accomplished by downregulation of Bcl-2 and upregulation of BAX and caspase-3. After that, the most promising apoptotic compound that increases the caspase-3 and BAX expression and downregulates Bcl-2 activity (3) was assessed for its impact on the cell cycle distribution in HepG-2 cells: The most potent derivative (3) induced cell cycle arrest at the G2/M phase. Finally, in silico evaluation of the ADME properties indicated that compound 3 is orally bioavailable and can be readily synthesized on a large scale.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Quinoxalinas/farmacología , Relación Estructura-Actividad , Regulación hacia Arriba , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología
19.
Arch Pharm (Weinheim) ; 355(1): e2100266, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34747519

RESUMEN

A series of 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives were designed using the molecular hybridization method, characterized using different spectroscopic techniques, and evaluated for their in vitro antimicrobial activity. Most of the target compounds demonstrated good to moderate antimicrobial activity compared with ciprofloxacin and fluconazole. Four compounds (8b, 9a, 9c, and 10a) showed encouraging results, with minimal inhibitory concentration (MIC) values (53.45-258.32 µM) comparable to those of norfloxacin (100.31-200.63 µM) and ciprofloxacin (48.33-96.68 µM). Noticeably, the four derivatives revealed excellent bactericidal and fungicidal activities, except for the bacteriostatic potential of compounds 8b and 9a against Escherichia coli and Staphylococcus aureus, respectively. The time-killing kinetic study against S. aureus confirmed the efficacy of these derivatives. Furthermore, two of the four promising derivatives, 9a and 10a, could prevent the formation of biofilms of S. aureus without affecting the bacterial growth at low concentrations. A combination study with seven commercial antibiotics against the multidrug-resistant bacterium P. aeruginosa showed a notable reduction in the antibiotic MIC values, represented mainly through a synergistic or additive effect. The enzymatic assay implied that the most active derivatives had inhibition potency against DNA gyrase comparable to that of ciprofloxacin. Molecular docking and density functional theory calculations were performed to explore the binding mode and study the reactivity of the promising compounds.


Asunto(s)
Antiinfecciosos/farmacología , Indoles/farmacología , Pirazoles/farmacología , Inhibidores de Topoisomerasa II/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Ciprofloxacina/farmacología , Girasa de ADN/efectos de los fármacos , Girasa de ADN/metabolismo , Indoles/síntesis química , Indoles/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación del Acoplamiento Molecular , Norfloxacino/farmacología , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química
20.
Bioorg Chem ; 119: 105571, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34959177

RESUMEN

Nowadays, it's imperative to develop novel antimicrobial agents active against both drug-sensitive and drug-resistant bacterial infections with favorable profiles as high efficacy, low toxicity, and short therapy duration. Accordingly, a series of new thiazolo-indolin-2-one derivatives were synthesized based on acid and base catalyzed condensation or reaction of thiosemicarbazone 8 with different electrophilic reagents. The structure of the new compounds was confirmed based on elemental analysis and spectral data. Based on the MIC results, the most active thiazolo-indoline derivatives 2, 4, 7a, and 12 exhibited promising antibacterial activity against gram-positive and gram-negative bacteria with weak to moderate antifungal activities. Surprisingly, the N-(thiazol-2-yl)benzenesulfonamide derivative 4 was found to be most active on antibiofilm activity against both S. aureus (ATCC 29213) with BIC50 (1.95 ± 0.01 µg/mL), while 5-(2-oxoindolin-3-ylidene)-thiazol-4(5H)-one derivative 7a exhibited the strongest antibiofilm activity against P. aeruginosa pathogens with BIC50 (3.9 ± 0.16 µg/mL). Further, the thiazole derivatives 2, 4 and 12 exhibited a significant inhibition activity against the fsr system in a dose-dependent manner without affecting bacterial growth. The target derivatives behaved synergistic and additively effect against MDR p. aeruginosa, and thiazole derivative 12 exhibited a high synergistic effect with most tested antibiotics except Cefepime with FIC value ranging between 0.249 and 1.0, reducing their MICs. Interestingly, the 3-(2-(4-thiazol-2-yl)hydrazono)indolin-2-one derivative 12 displayed the highest selectivity to DHFR inhibitory with IC50 value 40.71 ± 1.86 nM superior to those of the reference Methotrexate. Finally, in silico molecular modeling simulation, some physicochemical properties and toxicity predictions were performed for the most active derivatives.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Desarrollo de Medicamentos , Antagonistas del Ácido Fólico/farmacología , Indoles/farmacología , Tiazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Antagonistas del Ácido Fólico/síntesis química , Antagonistas del Ácido Fólico/química , Indoles/síntesis química , Indoles/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/metabolismo , Tiazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA