RESUMEN
The One-Health approach recognizes the intricate connection between human, animal, and environmental health, and that cooperative effort from various professionals provides comprehensive awareness and potential solutions for issues relating to the health of people, animals, and the environment. This approach has increasingly gained appeal as the standard strategy for tackling emerging infectious diseases, most of which are zoonoses. Treatment with anthelmintics (AHs) without a doubt minimizes the severe consequences of soil-transmitted helminths (STHs); however, evidence of anthelmintic resistance (AR) development to different helminths of practically every animal species and the distinct groups of AHs is overwhelming globally. In this regard, the correlation between the application of anthelmintic drugs in both human and animal populations and the consequent development of anthelmintic resistance in STHs within the context of a One-Health framework is explored. This review provides an overview of the major human and animal STHs, treatment of the STHs, AR development and drug-related factors contributing towards AR, One-Health and STHs, and an outline of some One-Health strategies that may be used in combating AR.
Asunto(s)
Antihelmínticos , Helmintiasis , Helmintos , Salud Única , Animales , Humanos , Helmintiasis/tratamiento farmacológico , Helmintiasis/prevención & control , Helmintiasis/parasitología , Suelo/parasitología , Antihelmínticos/farmacología , Antihelmínticos/uso terapéuticoRESUMEN
Exposure to pathogens during wastewater treatment could result in significant health risks. In this paper, a probabilistic approach for assessing the risks of microbial infection for workers in an activated sludge wastewater treatment plant is presented. A number of exposure routes were modelled, including hand-to-mouth and droplet ingestion of untreated wastewater, droplet ingestion and inhalation of aerosols after secondary treatment, and ingestion of sludge during drying. Almost all workers exposed to untreated wastewater could be infected with the three selected potential pathogens of pathogenic E. coli, Norovirus and Cryptosporidium spp. Hand-to-mouth ingestion is the single most significant route of exposure at the head of works. There is also a risk of infections resulting from ingestion of droplets or inhalation of aerosols at the aeration tanks or contaminated hands at the clarifiers during secondary wastewater treatment. For sludge, the risks of infection with Norovirus was found to be the highest due to accidental ingestion (median risks of 2.2 × 10-2(±3.3 × 10-3)). Regardless of the point and route of exposure, Norovirus and Cryptosporidium spp. presented the highest risks. The study finds that occupational exposure to wastewater at wastewater treatment plants can result in significant viral and protozoan infections. This risk assessment framework can be used to establish and measure the success of risk reduction measures in wastewater treatment plants. These measures could include the use of personal protective equipment and adherence to strict personal hygiene.
Asunto(s)
Criptosporidiosis , Cryptosporidium , Norovirus , Exposición Profesional , Purificación del Agua , Aerosoles , Criptosporidiosis/epidemiología , Escherichia coli , Humanos , Medición de Riesgo , Aguas del Alcantarillado , Aguas ResidualesRESUMEN
South African rivers generally receive waste from inadequate wastewater infrastructure, mines, and farming activities, among others. The uMsunduzi River in KwaZulu-Natal, South Africa, is among these recipients with recorded poor to very poor water quality. To identify parts of the uMsunduzi River that are polluted by Cryptosporidium and Escherichia coli (E. coli), this study mapped out pollutants emanating from point and non-point sources using the Soil and Water Assessment Tool (SWAT). Streamflow calibration in the upper and lower reaches of the catchment showed good performance with R2 of 0.64 and 0.58, respectively. SWAT water quality output data were combined with a Quantitative Microbial Risk Assessment (QMRA) to understand the microbial health implications for people using river water for drinking, recreational swimming, and non-competitive canoeing. QMRA results for Cryptosporidium and pathogenic E. coli showed that the probability of infection for most users exceeds the acceptable level for drinking and recreation as outlined in the South African water quality guidelines, and by the World Health Organization (WHO). The results of this study can be used as a baseline to assess the economic and health implications of different management plans, resulting in better-informed, cost-effective, and impactful decision-making.
Asunto(s)
Criptosporidiosis , Cryptosporidium , Escherichia coli , Humanos , Medición de Riesgo , Ríos/química , Sudáfrica , Calidad del AguaRESUMEN
Wastewater-based epidemiology has been used as a tool for surveillance of COVID-19 infections. This approach is dependent on the detection and quantification of SARS-CoV-2 RNA in untreated/raw wastewater. However, the quantification of the viral RNA could be influenced by the physico-chemical properties of the wastewater. This study presents the first use of Adaptive Neuro-Fuzzy Inference System (ANFIS) to determine the potential impact of physico-chemical characteristics of wastewater on the detection and concentration of SARS-CoV-2 RNA in wastewater. Raw wastewater samples from four wastewater treatment plants were investigated over four months. The physico-chemical characteristics of the raw wastewater was recorded, and the SARS-CoV-2 RNA concentration determined via amplification with droplet digital polymerase chain reaction. The wastewater characteristics considered were chemical oxygen demand, flow rate, ammonia, pH, permanganate value, and total solids. The mean SARS-CoV-2 RNA concentrations ranged from 648.1(±514.6) copies/mL to 1441.0(±1977.8) copies/mL. Among the parameters assessed using the ANFIS model, ammonia and pH showed significant association with the concentration of SARS-CoV-2 RNA measured. Increasing ammonia concentration was associated with increasing viral RNA concentration and pH between 7.1 and 7.4 were associated with the highest SARS-CoV-2 concentration. Other parameters, such as total solids, were also observed to influence the viral RNA concentration, however, this observation was not consistent across all the wastewater treatment plants. The results from this study indicate the importance of incorporating wastewater characteristic assessment into wastewater-based epidemiology for a robust and accurate COVID-19 surveillance.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , ARN Viral , Carga Viral , Aguas ResidualesRESUMEN
Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has the potential to become a cheaper and faster option for monitoring COVID-19 infections through wastewater-based epidemiology. However, its application in COVID-19 surveillance has been limited to clinical testing only. We present in this paper two optimized RT-LAMP protocols based on colour change and fluorescence detection and application of these protocols for wastewater monitoring from four wastewater treatment plants over 4 weeks. The optimized RT-LAMP protocols have a limit of detection of 10 copies/25 µl reaction with positive amplification within 35 minutes. Over the 4 weeks of monitoring, the colorimetric protocol detected a prevalence of 12.5%, when 1 µl of extracted RNA with 92.7(± 28.2) ng/µl concentration was analysed. When the RNA template was increased by fivefold, the prevalence increased to 44%. The fluorescent RT-LAMP had a prevalence of 31% and 47% for starting templates of 92.7(± 28.2) ng/µl and 480(± 134.5) ng/µl of the extracted RNA, respectively. All samples were positive for SARS-CoV-2 when analysed with droplet digital PCR, with viral loads ranging from 18.1 to 195.6 gc/ml of wastewater. The RT-ddPCR, therefore, confirms the presence of the viral RNA in the wastewater samples, albeit at low concentrations. Additionally, the RT-LAMP protocols positively detected SARS-CoV-2 in wastewater samples with copies as low as 20.7 gc/ml. The results obtained in our study show the potential application of RT-LAMP for the detection of SARS-CoV-2 in wastewater, which could provide a cheaper and faster alternative to RT-qPCR or RT-ddPCR for wastewater-based epidemiological monitoring of COVID-19 and other viral infections.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/genética , Sensibilidad y Especificidad , Aguas ResidualesRESUMEN
Contamination of contact surfaces with SARS-CoV-2 has been reported as a potential route for the transmission of COVID-19. This could be a major issue in developing countries where access to basic sanitation is poor, leading to the sharing of toilet facilities. In this study, we report SARS-CoV-2 contamination of key contact surfaces in shared toilets and the probabilistic risks of COVID-19 infections based on detection and quantification of the nucleic acid on the surfaces. We observed that 54-69% of the contact surfaces were contaminated, with SARS-CoV-2 loads ranging from 28.1 to 132.7 gene copies per cm2. Toilet seats had the highest contamination, which could be attributed to shedding of the virus in feces and urine. We observed a significant reduction in viral loads on the contaminated surfaces after cleaning, showing the potential of effective cleaning on the reduction of contamination. The pattern of contamination indicates that the most contaminated surfaces are those that are either commonly touched by users of the shared toilets or easily contaminated with feces and urine. These surfaces were the toilet seats, cistern handles and tap handles. The likelihood (probability) of infection with COVID-19 on these surfaces was highest on the toilet seat (1.76 × 10-4(1.58 × 10-6)) for one time use of the toilet. These findings highlight the potential risks for COVID-19 infections in the event that intact infectious viral particles are deposited on these contact surfaces. Therefore, this study shows that shared toilet facilities in densely populated areas could lead to an increase in risks of COVID-19 infections. This calls for the implementation of risk reduction measures, such as regular washing of hands with soap, strict adherence to wearing face masks, and effective and regular cleaning of shared facilities.
Asunto(s)
COVID-19/transmisión , ARN Viral/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Saneamiento/estadística & datos numéricos , Cuartos de Baño/estadística & datos numéricos , Contaminación de Equipos , HumanosRESUMEN
Monitoring of COVID-19 infections within communities via wastewater-based epidemiology could provide a cost-effective alternative to clinical testing. This approach, however, still requires improvement for its efficient application. In this paper, we present the use of wastewater-based epidemiology in monitoring COVID-19 infection dynamics in the KwaZulu-Natal province of South Africa, focusing on four wastewater treatment plants for 14 weeks. The SARS-CoV-2 viral load in influent wastewater was determined using droplet digital PCR, and the number of people infected was estimated using published models as well as using a modified model to improve efficiency. On average, viral loads ranged between 0 and 2.73 × 105 copies/100 ml, 0-1.52 × 105 copies/100 ml, 3 × 104-7.32 × 105 copies/100 ml and 1.55 × 104-4.12 × 105 copies/100 ml in the four wastewater treatment plants studied. The peak in viral load corresponded to the reported COVID-19 infections within the districts where these catchments are located. In addition, we also observed that easing of lockdown restrictions by authorities corresponded with an increase in viral load in the untreated wastewater. Estimation of infection numbers based on the viral load showed that a higher number of people could potentially be infected, compared to the number of cases reported based on clinical testing. The findings reported in this paper contribute to the field of wastewater-based epidemiology for COVID-19 surveillance, whilst highlighting some of the challenges associated with this approach, especially in developing countries.
Asunto(s)
COVID-19 , Aguas Residuales , Control de Enfermedades Transmisibles , Humanos , SARS-CoV-2 , Sudáfrica/epidemiologíaRESUMEN
Aquatic environments are hotspots for the spread of antibiotic-resistant bacteria and genes due to pollution caused mainly by anthropogenic activities. The aim of this study was to evaluate the impact of wastewater effluents, informal settlements, hospital, and veterinary clinic discharges on the occurrence, antibiotic resistance profile and virulence signatures of Aeromonas spp. and Pseudomonas spp. isolated from surface water and wastewater. High counts of Aeromonas spp. (2.5 (± 0.8) - 3.3 (± 0.4) log10 CFU mL-1) and Pseudomonas spp. (0.6 (± 1.0) - 1.8 (± 1.0) log10 CFU mL-1) were obtained. Polymerase chain reaction (PCR) and MALDI-TOF characterization identified four species of Aeromonas and five of Pseudomonas. The isolates displayed resistance to 3 or more antibiotics (71% of Aeromonas and 94% of Pseudomonas). Aeromonas spp. showed significant association with the antibiotic meropenem (χ2 = 3.993, P < 0.05). The virulence gene aer in Aeromonas was found to be positively associated with the antibiotic resistance gene blaOXA (χ2 = 6.657, P < 0.05) and the antibiotic ceftazidime (χ2 = 7.537, P < 0.05). Aeromonas recovered from both wastewater and surface water displayed high resistance to ampicillin and had higher multiple antibiotic resistance (MAR) indices close to the hospital. Pseudomonas isolates on the other hand exhibited low resistance to carbapenems but very high resistance to the third-generation cephalosporins and cefixime. The results showed that some of the Pseudomonas spp. and Aeromonas spp. isolates were extended-spectrum ß-lactamase producing bacteria. In conclusion, the strong association between virulence genes and antibiotic resistance in the isolates shows the potential health risk to communities through direct and indirect exposure to the water.
Asunto(s)
Aeromonas , Aeromonas/genética , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Monitoreo del Ambiente , Pruebas de Sensibilidad Microbiana , Pseudomonas/genética , Virulencia , Aguas Residuales , AguaRESUMEN
The quality of surface water could be influenced by both anthropogenic and natural factors. This study was designed to determine the impact of informal settlement and wastewater treatment plants on helminth egg contamination of urban rivers and the risks associated with everyday use. We also ascertained the accumulation of these eggs in the river sediments. The study was carried out in two rivers in the eThekwini Municipality of South Africa. Grab samples were taken at different points over a 10-month period. Ascaris spp., hookworm, Toxocara spp., Trichuris spp. and Taenia spp. were the helminth eggs detected in both the water column and sediments, with mean Ascaris spp. eggs of 0-6.3 (± 5.1)/L in the water and 0-6.8 (± 5.2)/kg in sediment samples. The helminth egg concentrations showed seasonal variation, probably due to changes in infection levels of the populations or natural factors, such as rainfall. The informal settlements had a greater impact than treated wastewater. For every 10,000 recreational users of the rivers 19 to 58 may be infected under undisturbed conditions, increasing to 29-88 individuals when the riverbed is disturbed. The risk from agricultural use of the rivers was above the tolerable risk values applicable for wastewater reuse, recommended by the World Health Organization. This calls for a re-evaluation of the policies governing surface water quality assessment, where the inclusion of helminth eggs and sediment monitoring will be critical.
Asunto(s)
Helmintos , Aguas Residuales , Animales , Monitoreo del Ambiente , Humanos , Ríos , SudáfricaRESUMEN
The last 17 years have seen three major outbreaks caused by coronaviruses, with the latest outbreak, COVID-19, declared a pandemic by the World Health Organization. The frequency of these outbreaks, their mortality and associated disruption to normal life calls for concerted efforts to understand their occurrence and fate in different environments. There is an increased interest in the occurrence of coronaviruses in wastewater from the perspective of wastewater-based epidemiology. However, there is no comprehensive review of the knowledge on coronavirus occurrence, fate and potential transmission in wastewater. This paper, provides a review of the literature on the occurrence of coronaviruses in wastewater treatment processes. We discuss the presence of viral RNA in feces as a result of diarrhoea caused by gastrointestinal infections. We also reviewed the literature on the presence, survival and potential removal of coronaviruses in common wastewater treatment processes. The detection of infectious viral particles in feces of patients raises questions on the potential risks of infection for people exposed to untreated sewage/wastewater. We, therefore, highlighted the potential risk of infection with coronaviruses for workers in wastewater treatment plants and the public that may be exposed through faulty plumbing or burst sewer networks. The mortalities and morbidities associated with the current COVID-19 pandemic warrants a much more focused research on the role of environments, such as wastewater and surface water, in disease transmission. The current wealth of knowledge on coronaviruses in wastewater based on the reviewed literature is scant and therefore calls for further studies.
Asunto(s)
Betacoronavirus , COVID-19 , Coronavirus , Neumonía Viral , Humanos , Pandemias , Neumonía Viral/epidemiología , SARS-CoV-2 , Aguas ResidualesRESUMEN
During sludge bulking in wastewater treatment plants (WWTPs), high amounts of potentially pathogenic bacteria would release into the environment, causing various human-health risks. This is the first study attempting to assess the microbial infections associated with the reuse of WWTP effluents under various bulking conditions. Three common waterborne pathogens, viz., E. coli O157:H7, Salmonella, and Mycobacterium, were quantified from full-scale WWTPs using DNA extraction and qPCR at different sludge volume indices (SVIs). The detected pathogens were incorporated into a quantitative microbial risk assessment (QMRA) model to determine the applicability of WWTP discharge for recreational (bathing) activities and agricultural practices. The QMRA exposures were children, women, and men during swimming, and farmers and vegetable consumers during irrigation. Bacterial abundance in the treated wastewater increased in response to SVIs, and the QMRA values at all bulking events exceeded the tolerable risk of one case of infection per 10,000 people per year. Hence, various disinfection scenarios (chlorination, ultraviolet, and ozonation) were hypothetically tested to control the risks associated with pathogenic bacteria, allowing for safe disposal and reuse of the treated effluent. The ultraviolet application provided the highest ability to inactivate the pathogenic bacteria, except for the case of children exposed to Salmonella infection during swimming. The reduction of Mycobacterium infection risks with either chlorination or ozonation showed inefficient results. This study would be helpful for the management of human health risks associated with effluent wastewater containing pathogens, i.e., particularly concerning the case of sludge bulking.
Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Bacterias , Niño , Desinfección , Femenino , Humanos , Masculino , Medición de RiesgoRESUMEN
The use of sludge in agriculture has been encouraged as a means of increasing soil nutrient content and improving the water holding capacity. On the negative side, major public health concerns with sludge application prevail, mainly due to the high concentration of pathogenic microorganisms. Soil-transmitted helminths (STHs) are of major health concern in this regard, especially in endemic regions, mainly due to the high environmental resistant of the eggs combined with a low infectious dose. In this study the concentration of STH eggs in two months dried sludge from Durban, South Africa and Dakar, Senegal was determined and compared. Sampling was carried out from January to October 2016 and in September 2016 for Dakar. Ascaris spp, hookworm, Trichuris spp, Taenia spp and Toxocara spp were the commonly recorded STH eggs. STH egg concentrations were higher in Dakar than in Durban, with viable STH egg concentrations exceeding both local and international guidelines. Due to the high concentration of viable STH eggs, risks of Ascaris spp infection was very high for farmers applying this sludge on their farms in both Durban (7.9 × 10-1 (±1.7 × 10-2)) and Dakar (9.9 × 10-1 (±1.3 × 10-5)). Consumption of lettuce grown on sludge amended soil will result in probable infections but harvest after 30 days between sludge application and harvest in Durban gave median probability infection risks with a risk level similar to the WHO tolerable risk value (10-4). This time period need to be prolonged to harvest in Dakar to 40 days to reduce the risks of infection to the tolerable risks values. Further treatment of the sludge either through composting or drying for longer periods of time is thus recommended from a public health perspective.
Asunto(s)
Helmintos , Aguas del Alcantarillado , Suelo , Animales , Senegal , SudáfricaRESUMEN
OBJECTIVE: To review current evidence on infections related to the concentration of soil-transmitted helminth (STH) eggs in wastewater, sludge and vegetables irrigated with wastewater or grown on sludge-amended soils. METHOD: Search of Web of Science, Science Direct, PubMed and Google Scholar databases for publications reporting on STH egg concentration in wastewater, sludge and vegetables and for epidemiological studies on wastewater/sludge reuse and STH infections. RESULTS: STH egg concentrations were variable but high in wastewater and sludge especially in developing countries. They ranged from 6 to 16 000 eggs/L in wastewater and from 0 to 23 000 eggs/g in sludge and far exceed limits set in the WHO guideline for wastewater/sludge reuse. Numbers of STH eggs on vegetables ranged from 0 to 100 eggs/g. The concentration of STH eggs in wastewater, sludge and vegetables therefore relates to risks of infection through different exposure routes. CONCLUSION: Epidemiological evidence reveals an increased prevalence of STH infections associated with direct exposure to wastewater or sludge (farmers) and consumption of vegetables grown on soil treated with it. This calls for increased efforts to reduce the adverse health impact of wastewater and sludge reuse in line with the WHO multi-barrier approach.
Asunto(s)
Helmintiasis/epidemiología , Suelo/parasitología , Verduras/parasitología , Aguas Residuales/parasitología , Animales , Países en Desarrollo , Helmintiasis/parasitología , Helmintiasis/prevención & control , Helmintiasis/transmisión , Humanos , Recuento de Huevos de Parásitos , Prevalencia , Aguas del Alcantarillado/parasitologíaRESUMEN
Wastewater may contain contaminants harmful to human health; hence, there is the need for treatment before discharge. Centralized wastewater treatment systems are the favored treatment options globally, but these are not necessarily superior in reduction of pathogens as compared to decentralized wastewater treatment systems (collectively called DEWATS). This study was therefore undertaken to assess the soil-transmitted helminth (STH) and Taenia sp. egg reduction efficiency of selected anaerobic baffled reactors and planted gravel filters compared to centralized wastewater treatment plants in South Africa and Lesotho. The risk of ascariasis with exposure to effluents from the centralized wastewater treatment plants was also assessed using the quantitative microbial risk assessment (QMRA) approach. Eggs of Ascaris spp., hookworm, Trichuris spp., Taenia spp., and Toxocara spp. were commonly detected in the untreated wastewater. The DEWATS plants removed between 95 and 100% of the STH and Taenia sp. eggs, with centralized plants removing between 67 and 100%. Helminth egg concentrations in the final effluents from the centralized wastewater treatment plants were consistently higher than those in the WHO recommended guideline (≤ 1 helminth egg/L) for agricultural use resulting in higher risk of ascariasis. Therefore, in conclusion, DEWATS plants may be more efficient in reducing the concentration of helminth eggs in wastewater, resulting in lower risks of STH infections upon exposure.
Asunto(s)
Helmintiasis/prevención & control , Helmintos/aislamiento & purificación , Aguas Residuales/parasitología , Contaminación del Agua/análisis , Purificación del Agua/métodos , Animales , Reactores Biológicos , Filtración , Humanos , Lesotho , Recuento de Huevos de Parásitos , Medición de Riesgo , Suelo/parasitología , SudáfricaRESUMEN
Soil-transmitted helminths (STHs) are a major health concern globally. Infection is mostly through contact with contaminated water, food or soil. Therefore to break the cycle of viable transmission STH eggs must be quantitatively detected in the environment. The effect of different reagents on the viability of Ascaris suum eggs during laboratory detection and quantification was assessed and different incubation solutions compared. Sulphuric acid gave a slightly higher recovery percentage of viable eggs (91.2%) than distilled water (90.0%) and 0.5% formalin (87.6%), although the difference was not statistically significant (p > 0.05). Acetoacetic acid, ethyl acetate, ammonium bicarbonate, zinc sulphate, magnesium sulphate and Tween 80, are reagents widely used in test protocols for the detection and quantification of STH eggs. Eggs were exposed to these reagents for different time durations. Acetoacetic acid resulted in the highest loss of viability (3.4 ± 0.7% viable), while magnesium sulphate resulted in the least effect (88.5 ± 1.2% viable). In conclusion the use of the selected reagents in the detection of these eggs was found to affect the viability of exposed eggs, especially during prolonged exposures. Therefore we recommended that eggs be exposed for ≤5 minutes, to reduce the risk of viability loss.
Asunto(s)
Ascaris suum/aislamiento & purificación , Óvulo/crecimiento & desarrollo , Parasitología/métodos , Suelo/parasitología , Agua/parasitología , Animales , Ascaris suum/crecimiento & desarrollo , Indicadores y Reactivos/análisis , Recuento de Huevos de ParásitosRESUMEN
It is estimated that over a billion people are infected with soil-transmitted helminths (STHs) globally with majority occurring in tropical and subtropical regions of the world. The roundworm (Ascaris lumbricoides), whipworm (Trichuris trichiura), and hookworms (Ancylostoma duodenale and Necator americanus) are the main species infecting people. These infections are mostly gained through exposure to faecally contaminated water, soil or contaminated food and with an increase in the risk of infections due to wastewater and sludge reuse in agriculture. Different methods have been developed for the detection and quantification of STHs eggs in environmental samples. However, there is a lack of a universally accepted technique which creates a challenge for comparative assessments of helminths egg concentrations both in different samples matrices as well as between locations. This review presents a comparison of reported methodologies for the detection of STHs eggs, an assessment of the relative performance of available detection methods and a discussion of new emerging techniques that could be applied for detection and quantification. It is based on a literature search using PubMed and Science Direct considering all geographical locations. Original research articles were selected based on their methodology and results sections. Methods reported in these articles were grouped into conventional, molecular and emerging techniques, the main steps in each method were then compared and discussed. The inclusion of a dissociation step aimed at detaching helminth eggs from particulate matter was found to improve the recovery of eggs. Additionally the selection and application of flotation solutions that take into account the relative densities of the eggs of different species of STHs also results in higher egg recovery. Generally the use of conventional methods was shown to be laborious and time consuming and prone to human error. The alternate use of nucleic acid-based techniques has improved the sensitivity of detection and made species specific identification possible. However, these nucleic acid based methods are expensive and less suitable in regions with limited resources and skill. The loop mediated isothermal amplification method shows promise for application in these settings due to its simplicity and use of basic equipment. In addition, the development of imaging soft-ware for the detection and quantification of STHs shows promise to further reduce human error associated with the analysis of environmental samples. It may be concluded that there is a need to comparatively assess the performance of different methods to determine their applicability in different settings as well as for use with different sample matrices (wastewater, sludge, compost, soil, vegetables etc.).
Asunto(s)
Helmintiasis/parasitología , Helmintos/aislamiento & purificación , Suelo/parasitología , Ancylostoma , Animales , Ascaris lumbricoides/aislamiento & purificación , Heces/parasitología , Humanos , Necator americanus/aislamiento & purificación , Trichuris/aislamiento & purificación , Aguas Residuales/parasitologíaRESUMEN
Wastewater irrigation is associated with several benefits but can also lead to significant health risks. The health risk for contracting infections from Soil Transmitted Helminths (STHs) among farmers has mainly been assessed indirectly through measured quantities in the wastewater or on the crops alone and only on a limited scale through epidemiological assessments. In this study we broadened the concept of infection risks in the exposure assessments by measurements of the concentration of STHs both in wastewater used for irrigation and the soil, as well as the actual load of STHs ova in the stool of farmers and their family members (165 and 127 in the wet and dry seasons respectively) and a control group of non-farmers (100 and 52 in the wet and dry seasons, respectively). Odds ratios were calculated for exposure and non-exposure to wastewater irrigation. The results obtained indicate positive correlation between STH concentrations in irrigation water/soil and STHs ova as measured in the stool of the exposed farmer population. The correlations are based on reinfection during a 3 months period after prior confirmed deworming. Farmers and family members exposed to irrigation water were three times more likely as compared to the control group of non-farmers to be infected with Ascaris (OR = 3.9, 95% CI, 1.15-13.86) and hookworm (OR = 3.07, 95% CI, 0.87-10.82). This study therefore contributes to the evidence-based conclusion that wastewater irrigation contributes to a higher incidence of STHs infection for farmers exposed annually, with higher odds of infection in the wet season.
Asunto(s)
Riego Agrícola , Ascariasis/etiología , Ascariasis/transmisión , Agricultores , Heces/parasitología , Infecciones por Uncinaria/etiología , Infecciones por Uncinaria/transmisión , Suelo/parasitología , Aguas Residuales/parasitología , Agricultura/métodos , Agricultura/normas , Ancylostomatoidea/aislamiento & purificación , Animales , Ascariasis/epidemiología , Ascariasis/parasitología , Ascaris/aislamiento & purificación , Productos Agrícolas , Familia , Ghana/epidemiología , Infecciones por Uncinaria/epidemiología , Infecciones por Uncinaria/parasitología , Humanos , Oportunidad Relativa , Estaciones del Año , VerdurasRESUMEN
The emergence of antimicrobial resistant bacteria is an important public health and environmental contamination issue. Antimicrobials of ß-lactam group accounts for approximately two thirds, by weight, of all antimicrobials administered to humans due to high clinical efficacy and low toxicity. This study explores ß-lactam resistance determinant gene (blaTEM) as emerging contaminant in Indo-Gangetic region using qPCR in molecular beacon format. Quantitative Microbial Risk Assessment (QMRA) approach was adopted to predict risk to human health associated with consumption/exposure of surface water, potable water and street foods contaminated with bacteria having blaTEM gene. It was observed that surface water and sediments of the river Ganga and Gomti showed high numbers of blaTEM gene copies and varied significantly (p<0.05) among the sampling locations. The potable water collected from drinking water facility and clinical settings exhibit significant number of blaTEM gene copies (13±0.44-10200±316 gene copies/100mL). It was observed that E.crassipes among aquatic flora encountered in both the rivers had high load of blaTEM gene copies. The information on prevalence of environmental reservoirs of blaTEM gene containing bacteria in Indo-Gangetic region and risk associated will be useful for formulating strategies to protect public from menace of clinical risks linked with antimicrobial resistant bacteria.