Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Nat Commun ; 14(1): 5247, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640701

RESUMEN

Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Animales , Ratones , Enfermedades Neurodegenerativas/genética , Macrófagos , Células Mieloides , Flujo Genético
2.
Biomedicines ; 11(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37509608

RESUMEN

The occurrence of B cell aggregates within the central nervous system (CNS) has prompted the investigation of the potential sources of pathogenic B cell and T cell responses in a subgroup of secondary progressive multiple sclerosis (MS) patients. Nevertheless, the expression profile of molecules associated with these aggregates and their role in aggregate development and persistence is poorly described. Here, we focused on the expression pattern of osteopontin (OPN), which is a well-described cytokine, in MS brain tissue. Autopsied brain sections from MS cases with and without B cell pathology were screened for the presence of CD20+ B cell aggregates and co-expression of OPN. To demonstrate the effect of OPN on B cells, flow cytometry, ELISA and in vitro aggregation assays were conducted using the peripheral blood of healthy volunteers. Although OPN was expressed in MS brain tissue independent of B cell pathology, it was also highly expressed within B cell aggregates. In vitro studies demonstrated that OPN downregulated the co-stimulatory molecules CD80 and CD86 on B cells. OPN-treated B cells produced significantly lower amounts of IL-6. However, OPN-treated B cells also exhibited a higher tendency to form homotypic cell aggregates in vitro. Taken together, our data indicate a conflicting role of OPN in modulating B cell responses.

3.
Clin Exp Immunol ; 214(1): 1-17, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37410892

RESUMEN

Multiple sclerosis (MS) is characterized by the chronic inflammatory destruction of myelinated axons in the central nervous system. Several ideas have been put forward to clarify the roles of the peripheral immune system and neurodegenerative events in such destruction. Yet, none of the resulting models appears to be consistent with all the experimental evidence. They also do not answer the question of why MS is exclusively seen in humans, how Epstein-Barr virus contributes to its development but does not immediately trigger it, and why optic neuritis is such a frequent early manifestation in MS. Here we describe a scenario for the development of MS that unifies existing experimental evidence as well as answers the above questions. We propose that all manifestations of MS are caused by a series of unfortunate events that usually unfold over a longer period of time after a primary EBV infection and involve periodic weakening of the blood-brain barrier, antibody-mediated CNS disturbances, accumulation of the oligodendrocyte stress protein αB-crystallin and self-sustaining inflammatory damage.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Humanos , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Sistema Nervioso Central , Barrera Hematoencefálica/patología
4.
Glia ; 71(3): 588-601, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36377669

RESUMEN

Multiple sclerosis (MS) is the most common inflammatory, demyelinating and neurodegenerative disease of the central nervous system in young adults. Chronic-relapsing experimental autoimmune encephalomyelitis (crEAE) in Biozzi ABH mice is an experimental model of MS. This crEAE model is characterized by an acute phase with severe neurological disability, followed by remission of disease, relapse of neurological disease and remission that eventually results in a chronic progressive phase that mimics the secondary progressive phase (SPEAE) of MS. In both MS and SPEAE, the role of microglia is poorly defined. We used a crEAE model to characterize microglia in the different phases of crEAE phases using morphometric and RNA sequencing analyses. At the initial, acute inflammation phase, microglia acquired a pro-inflammatory phenotype. At the remission phase, expression of standard immune activation genes was decreased while expression of genes associated with lipid metabolism and tissue remodeling were increased. Chronic phase microglia partially regain inflammatory gene sets and increase expression of genes associated with proliferation. Together, the data presented here indicate that microglia obtain different features at different stages of crEAE and a particularly mixed phenotype in the chronic stage. Understanding the properties of microglia that are present at the chronic phase of EAE will help to understand the role of microglia in secondary progressive MS, to better aid the development of therapies for this phase of the disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Ratones , Animales , Esclerosis Múltiple/genética , Microglía/metabolismo , Esclerosis Múltiple Crónica Progresiva/genética , Ratones Biozzi , Encefalomielitis Autoinmune Experimental/metabolismo , Expresión Génica , Modelos Animales de Enfermedad
5.
Front Immunol ; 13: 1025377, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389698

RESUMEN

There has been a growing interest in the presence and role of B cell aggregates within the central nervous system of multiple sclerosis patients. However, very little is known about the expression profile of molecules associated with these aggregates and how they might be influencing aggregate development or persistence in the brain. The current study focuses on the effect of matrix metalloproteinase-3, which is associated with B cell aggregates in autopsied multiple sclerosis brain tissue, on B cells. Autopsied brain sections from multiple sclerosis cases and controls were screened for the presence of CD20+ B cell aggregates and expression of matrix metalloproteinase-3. Using flow cytometry, enzyme-linked immunosorbent assay and gene array as methods, in vitro studies were conducted using peripheral blood of healthy volunteers to demonstrate the effect of matrix metalloproteinase-3 on B cells. Autopsied brain sections from multiple sclerosis patients containing aggregates of B cells expressed a significantly higher amount of matrix metalloproteinase-3 compared to controls. In vitro experiments demonstrated that matrix metalloproteinase-3 dampened the overall activation status of B cells by downregulating CD69, CD80 and CD86. Furthermore, matrix metalloproteinase-3-treated B cells produced significantly lower amounts of interleukin-6. Gene array data confirmed that matrix metalloproteinase-3 altered the proliferation and survival profiles of B cells. Taken together, out data indicate a role for B cell modulatory properties of matrix metalloproteinase-3.


Asunto(s)
Esclerosis Múltiple , Humanos , Linfocitos B , Ensayo de Inmunoadsorción Enzimática , Encéfalo , Metaloproteinasas de la Matriz
6.
Nat Neurosci ; 25(8): 1104-1112, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35915177

RESUMEN

To date, most expression quantitative trait loci (eQTL) studies, which investigate how genetic variants contribute to gene expression, have been performed in heterogeneous brain tissues rather than specific cell types. In this study, we performed an eQTL analysis using single-nuclei RNA sequencing from 192 individuals in eight brain cell types derived from the prefrontal cortex, temporal cortex and white matter. We identified 7,607 eGenes, a substantial fraction (46%, 3,537/7,607) of which show cell-type-specific effects, with strongest effects in microglia. Cell-type-level eQTLs affected more constrained genes and had larger effect sizes than tissue-level eQTLs. Integration of brain cell type eQTLs with genome-wide association studies (GWAS) revealed novel relationships between expression and disease risk for neuropsychiatric and neurodegenerative diseases. For most GWAS loci, a single gene co-localized in a single cell type, providing new clues into disease etiology. Our findings demonstrate substantial contrast in genetic regulation of gene expression among brain cell types and reveal potential mechanisms by which disease risk genes influence brain disorders.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedades del Sistema Nervioso , Encéfalo , Predisposición Genética a la Enfermedad/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
7.
Clin Exp Immunol ; 209(2): 236-246, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35778909

RESUMEN

Optic neuritis, a primary clinical manifestation commonly observed in multiple sclerosis (MS), is a major factor leading to permanent loss of vision. Despite decreased vision (optic neuritis), diplopia, and nystagmus, the immunopathology of the optic nerve in MS is unclear. Here, we have characterized the optic nerve pathology in a large cohort of MS cases (n = 154), focusing on the immune responses in a sub-cohort of MS (n = 30) and control (n = 6) cases. Immunohistochemistry was used to characterize the myeloid (HLA-DR, CD68, Iba1, TMEM119, and P2RY12) and adaptive immune cells (CD4, CD8, and CD138) in the parenchyma, perivascular spaces, and meninges in optic nerve tissues from MS and control cases. Of the 154 MS cases, 122 (79%) reported visual problems; of which, 99 (81%) optic nerves showed evidence of damage. Of the 31 cases with no visual disturbances, 19 (61%) showed evidence of pathology. A pattern of myeloid cell activity and demyelination in the optic nerve was similar to white matter lesions in the brain and spinal cord. In the optic nerves, adaptive immune cells were more abundant in the meninges close to active and chronic active lesions, and significantly higher compared with the parenchyma. Similar to brain tissues in this Dutch cohort, B-cell follicles in the meninges were absent. Our study reveals that optic nerve pathology is a frequent event in MS and may occur in the absence of clinical symptoms.


Asunto(s)
Esclerosis Múltiple , Neuritis Óptica , Encéfalo/patología , Humanos , Esclerosis Múltiple/patología , Nervio Óptico , Neuritis Óptica/diagnóstico , Neuritis Óptica/patología , Médula Espinal/patología
8.
EMBO Rep ; 23(7): e54499, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35593064

RESUMEN

Targeting myeloid cells, especially microglia, for the treatment of neuroinflammatory diseases such as multiple sclerosis (MS), is underappreciated. Our in silico drug screening reveals topoisomerase 1 (TOP1) inhibitors as promising drug candidates for microglial modulation. We show that TOP1 is highly expressed in neuroinflammatory conditions, and TOP1 inhibition using camptothecin (CPT) and its FDA-approved analog topotecan (TPT) reduces inflammatory responses in microglia/macrophages and ameliorates neuroinflammation in vivo. Transcriptomic analyses of sorted microglia from LPS-challenged mice reveal an altered transcriptional phenotype following TPT treatment. To target myeloid cells, we design a nanosystem using ß-glucan-coated DNA origami (MyloGami) loaded with TPT (TopoGami). MyloGami shows enhanced specificity to myeloid cells while preventing the degradation of the DNA origami scaffold. Myeloid-specific TOP1 inhibition using TopoGami significantly suppresses the inflammatory response in microglia and mitigates MS-like disease progression. Our findings suggest that TOP1 inhibition in myeloid cells represents a therapeutic strategy for neuroinflammatory diseases and that the myeloid-specific nanosystems we designed may also benefit the treatment of other diseases with dysfunctional myeloid cells.


Asunto(s)
Enfermedades Neuroinflamatorias , Inhibidores de Topoisomerasa I , Animales , ADN , Macrófagos , Ratones , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología
9.
Glia ; 70(6): 1170-1190, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35246882

RESUMEN

Microglia are the resident innate immune cells of the central nervous system (CNS) parenchyma. To determine the impact of microglia on disease development and progression in neurodegenerative and neuroinflammatory diseases, it is essential to distinguish microglia from peripheral macrophages/monocytes, which are eventually equally recruited. It has been suggested that transmembrane protein 119 (TMEM119) serves as a reliable microglia marker that discriminates resident microglia from blood-derived macrophages in the human and murine brain. Here, we investigated the validity of TMEM119 as a microglia marker in four in vivo models (cuprizone intoxication, experimental autoimmune encephalomyelitis (EAE), permanent filament middle cerebral artery occlusion (fMCAo), and intracerebral 6-hydroxydopamine (6-OHDA) injections) as well as post mortem multiple sclerosis (MS) brain tissues. In all applied animal models and post mortem MS tissues, we found increased densities of ionized calcium-binding adapter molecule 1+ (IBA1+ ) cells, paralleled by a significant decrease in TMEM119 expression. In addition, other cell types in peripheral tissues (i.e., follicular dendritic cells and brown adipose tissue) were also found to express TMEM119. In summary, this study demonstrates that TMEM119 is not exclusively expressed by microglia nor does it label all microglia, especially under cellular stress conditions. Since novel transgenic lines have been developed to label microglia using the TMEM119 promotor, downregulation of TMEM119 expression might interfere with the results and should, thus, be considered when working with these transgenic mouse models.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Microglía , Animales , Sistema Nervioso Central , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo
10.
Acta Neuropathol Commun ; 10(1): 8, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35090578

RESUMEN

Multiple sclerosis (MS) is a disease of the central nervous system that is characterized by inflammation and focal areas of demyelination, ultimately resulting in axonal degradation and neuronal loss. Several lines of evidence point towards a role for microglia and other brain macrophages in disease initiation and progression, but exactly how lesion formation is triggered is currently unknown. Here, we characterized early changes in MS brain tissue through transcriptomic analysis of normal appearing white matter (NAWM). We found that NAWM was characterized by enriched expression of genes associated with inflammation and cellular stress derived from brain macrophages. Single cell RNA sequencing confirmed a stress response in brain macrophages in NAWM and identified specific microglia and macrophage subsets at different stages of demyelinating lesions. We identified both phagocytic/activated microglia and CAM clusters that were associated with various MS lesion types. These overall changes in microglia and macrophages associated with lesion development in MS brain tissue may provide therapeutic targets to limit lesion progression and demyelination.


Asunto(s)
Encéfalo/metabolismo , Enfermedades Desmielinizantes/metabolismo , Macrófagos/metabolismo , Esclerosis Múltiple/metabolismo , Transcriptoma , Sustancia Blanca/metabolismo , Animales , Encéfalo/patología , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Femenino , Humanos , Macrófagos/patología , Masculino , Ratones , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Sustancia Blanca/patología
11.
Acta Neuropathol ; 143(2): 125-141, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34878590

RESUMEN

Microglia, the resident myeloid cells in the central nervous system (CNS) play critical roles in shaping the brain during development, responding to invading pathogens, and clearing tissue debris or aberrant protein aggregations during ageing and neurodegeneration. The original concept that like macrophages, microglia are either damaging (pro-inflammatory) or regenerative (anti-inflammatory) has been updated to a kaleidoscope view of microglia phenotypes reflecting their wide-ranging roles in maintaining homeostasis in the CNS and, their contribution to CNS diseases, as well as aiding repair. The use of new technologies including single cell/nucleus RNA sequencing has led to the identification of many novel microglia states, allowing for a better understanding of their complexity and distinguishing regional variations in the CNS. This has also revealed differences between species and diseases, and between microglia and other myeloid cells in the CNS. However, most of the data on microglia heterogeneity have been generated on cells isolated from the cortex or whole brain, whereas white matter changes and differences between white and grey matter have been relatively understudied. Considering the importance of microglia in regulating white matter health, we provide a brief update on the current knowledge of microglia heterogeneity in the white matter, how microglia are important for the development of the CNS, and how microglial ageing affects CNS white matter homeostasis. We discuss how microglia are intricately linked to the classical white matter diseases such as multiple sclerosis and genetic white matter diseases, and their putative roles in neurodegenerative diseases in which white matter is also affected. Understanding the wide variety of microglial functions in the white matter may provide the basis for microglial targeted therapies for CNS diseases.


Asunto(s)
Microglía/citología , Sustancia Blanca/citología , Animales , Enfermedades del Sistema Nervioso Central/patología , Humanos
12.
Front Immunol ; 12: 771453, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880868

RESUMEN

Interleukin (IL)-4 is a cytokine that affects both adaptive and innate immune responses. In the central nervous system, microglia express IL-4 receptors and it has been described that IL-4-exposed microglia acquire anti-inflammatory properties. We here demonstrate that IL-4 exposure induces changes in the cell surface protein expression profile of primary rhesus macaque microglia and enhances their potential to induce proliferation of T cells with a regulatory signature. Moreover, we show that Toll like receptor (TLR)-induced cytokine production is broadly impaired in IL-4-exposed microglia at the transcriptional level. IL-4 type 2 receptor-mediated signaling is shown to be crucial for the inhibition of microglial innate immune responses. TLR-induced nuclear translocalization of NF-κB appeared intact, and we found no evidence for epigenetic modulation of target genes. By contrast, nuclear extracts from IL-4-exposed microglia contained significantly less NF-κB capable of binding to its DNA consensus site. Further identification of the molecular mechanisms that underlie the inhibition of TLR-induced responses in IL-4-exposed microglia may aid the design of strategies that aim to modulate innate immune responses in the brain, for example in gliomas.


Asunto(s)
Citocinas/inmunología , Microglía/inmunología , FN-kappa B/inmunología , Receptores Toll-Like/inmunología , Animales , Proliferación Celular , Células Cultivadas , Femenino , Histona Desacetilasas/genética , Lipopolisacáridos/farmacología , Macaca mulatta , Masculino , Linfocitos T/inmunología , Transcripción Genética
13.
BMJ Neurol Open ; 3(2): e000192, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34786556

RESUMEN

BACKGROUND AND OBJECTIVE: The concentration of neurofilament light (NfL) protein in cerebrospinal fluid (CSF) and blood is widely considered as a quantitative measure of neuro-axonal injury. Immune reactivity to NfL released into extracellular fluids induces specific autoantibody response. We investigated the levels and avidity of antibodies to NfL in patients with multiple sclerosis (MS) treated with disease-modifying therapies (DMTs) and their correlation with disease worsening and NfL protein concentration. METHODS: We conducted a prospective longitudinal study in 246 patients with MS (125 DMT-treated and 121 untreated at baseline). Serum levels of NfL antibodies, antibody avidity and immune complexes were determined by ELISA. NfL protein was measured using the Simoa platform. Clinical variables were tested for their association with the measured parameters in multivariate generalised estimating equation models. RESULTS: Multivariate analysis showed that levels of NfL antibodies were higher in progressive MS compared with clinically isolated syndrome (CIS)/relapsing remitting multiple sclerosis (RRMS) (p=0.010). Anti-NfL levels drop with increasing disability score (Expanded Disability Status Scale (EDSS)) (p=0.002), although conversely, were significantly elevated in CIS/RRMS after a recent EDSS increase (p=0.012). Patients receiving DMTs showed decreased levels of anti-NfL (p=0.008), high-avidity antibodies (p=0.017) and immune-complexes compared with untreated CIS/RRMS. Patients with MS switching to natalizumab showed lower levels of anti-NfL but higher immune complexes compared with healthy controls (p=0.0071). A weak association was observed between the levels of NfL protein and NfL antibodies. CONCLUSIONS: These results support the potential usefulness of quantifying antibody response to NfL as potential markers of progression and treatment response in MS and need to be considered when interpreting peripheral blood NfL levels.

14.
Clin Exp Immunol ; 206(3): 248-250, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34726266

RESUMEN

Innate and adaptive immune responses in the central nervous system (CNS) play critical roles in the pathogenesis of neurological diseases. In the first of a two-part special issue, leading researchers discuss how imaging modalities are used to monitor immune responses in several neurodegenerative diseases and glioblastoma and brain metastases. While comparative studies in humans between imaging and pathology are biased towards the end stage of disease, animal models can inform regarding how immune responses change with disease progression and as a result of treatment regimens. Magnetic resonance imaging (MRI) and positron emission tomography (PET) are frequently used to image disease progression, and the articles indicate how one or more of these modalities have been applied to specific neuroimmune diseases. In addition, advanced microscopical imaging using two-dimensional photon microscopy and in vitro live cell imaging have also been applied to animal models. In this special issue (Parts 1 and 2), as well as the imaging modalities mentioned, several articles discuss biomarkers of disease and microscopical studies that have enabled characterization of immune responses. Future developments of imaging modalities should enable tracking of specific subsets of immune cells during disease allowing longitudinal monitoring of immune responses. These new approaches will be critical to more effectively monitor and thus target specific cell subsets for therapeutic interventions which may be applicable to a range of neurological diseases.


Asunto(s)
Inmunidad Adaptativa/inmunología , Sistema Nervioso Central/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Inmunidad Innata/inmunología , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neuroinflamatorias/diagnóstico por imagen , Biomarcadores/análisis , Progresión de la Enfermedad , Glioblastoma/patología , Humanos , Imagen por Resonancia Magnética , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/patología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología , Tomografía de Emisión de Positrones , Tomografía de Coherencia Óptica
15.
Clin Exp Immunol ; 206(3): 301-313, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34510431

RESUMEN

Neuropathology studies of amyotrophic lateral sclerosis (ALS) and animal models of ALS reveal a strong association between aberrant protein accumulation and motor neurone damage, as well as activated microglia and astrocytes. While the role of neuroinflammation in the pathology of ALS is unclear, imaging studies of the central nervous system (CNS) support the idea that innate immune activation occurs early in disease in both humans and rodent models of ALS. In addition, emerging studies also reveal changes in monocytes, macrophages and lymphocytes in peripheral blood as well as at the neuromuscular junction. To more clearly understand the association of neuroinflammation (innate and adaptive) with disease progression, the use of biomarkers and imaging modalities allow monitoring of immune parameters in the disease process. Such approaches are important for patient stratification, selection and inclusion in clinical trials, as well as to provide readouts of response to therapy. Here, we discuss the different imaging modalities, e.g. magnetic resonance imaging, magnetic resonance spectroscopy and positron emission tomography as well as other approaches, including biomarkers of inflammation in ALS, that aid the understanding of the underlying immune mechanisms associated with motor neurone degeneration in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/patología , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Esclerosis Amiotrófica Lateral/inmunología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Inflamación/patología , Enfermedades Neuroinflamatorias/diagnóstico por imagen , Enfermedades Neuroinflamatorias/patología
16.
Glia ; 69(10): 2447-2458, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34145928

RESUMEN

To monitor innate immune responses in the CNS, the 18 kDa Translocator protein (TSPO) is a frequently used target for PET imaging. The frequent assumption that increased TSPO expression in the human CNS reflects pro-inflammatory activation of microglia has been extrapolated from rodent studies. However, TSPO expression does not increase in activated human microglia in vitro. Studies of multiple sclerosis (MS) lesions reveal that TSPO is not restricted to pro-inflammatory microglia/macrophages, but also present in homeostatic or reparative microglia. Here, we investigated quantitative relationships between TSPO expression and microglia/macrophage phenotypes in white matter and lesions of brains with MS pathology. In white matter from brains with no disease pathology, normal appearing white matter (NAWM), active MS lesions and chronic active lesion rims, over 95% of TSPO+ cells are microglia/macrophages. Homeostatic microglial markers in NAWM and control tissue are lost/reduced in active lesions and chronic active lesion rims, reflecting cell activation. Nevertheless, pixel analysis of TSPO+ cells (n = 12,225) revealed that TSPO expression per cell is no higher in active lesions and chronic active lesion rims (where myeloid cells are activated) relative to NAWM and control. This data suggests that whilst almost all the TSPO signal in active lesions, chronic active lesion rims, NAWM and control is associated with microglia/macrophages, their TSPO expression predominantly reflects cell density and not activation phenotype. This finding has implications for the interpretation of TSPO PET signal in MS and other CNS diseases, and further demonstrates the limitation of extrapolating TSPO biology from rodents to humans.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Encéfalo/metabolismo , Humanos , Macrófagos/metabolismo , Microglía/metabolismo , Esclerosis Múltiple/metabolismo , Tomografía de Emisión de Positrones , Receptores de GABA/genética , Receptores de GABA/metabolismo , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo
17.
Neurobiol Dis ; 155: 105371, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33932559

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) with episodes of inflammatory demyelination and remyelination. While remyelination has been linked with functional recovery in MS patients, there is evidence of ongoing tissue damage despite complete myelin repair. In this study, we investigated the long-term consequences of an acute demyelinating white matter CNS lesion. For this purpose, acute demyelination was induced by 5-week-cuprizone intoxication in male C57BL/6 J mice, and the tissues were examined after a 7-month recovery period. While myelination and oligodendrocyte densities appeared normal, ongoing axonal degeneration and glia cell activation were found in the remyelinated corpus callosum. Neuropathologies were paralleled by subtle gait abnormalities evaluated using DigiGait™ high speed ventral plane videography. Gene array analyses revealed increased expression levels of various inflammation related genes, among protein kinase c delta (PRKCD). Immunofluorescence stains revealed predominant microglia/macrophages PRKCD expression in both, cuprizone tissues and post-mortem MS lesions. These results support the hypothesis that chronic microglia/macrophages driven tissue injury represents a key aspect of progressive neurodegeneration and functional decline in MS.


Asunto(s)
Axones/patología , Encéfalo/patología , Mediadores de Inflamación , Esclerosis Múltiple/patología , Degeneración Nerviosa/patología , Sustancia Blanca/patología , Animales , Axones/metabolismo , Encéfalo/metabolismo , Quelantes/toxicidad , Cuprizona/toxicidad , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/psicología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/genética , Degeneración Nerviosa/psicología , Sustancia Blanca/metabolismo
18.
Acta Neuropathol ; 141(6): 881-899, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33779783

RESUMEN

Meningeal inflammation strongly associates with demyelination and neuronal loss in the underlying cortex of progressive MS patients, thereby contributing significantly to clinical disability. However, the pathological mechanisms of meningeal inflammation-induced cortical pathology are still largely elusive. By extensive analysis of cortical microglia in post-mortem progressive MS tissue, we identified cortical areas with two MS-specific microglial populations, termed MS1 and MS2 cortex. The microglial population in MS1 cortex was characterized by a higher density and increased expression of the activation markers HLA class II and CD68, whereas microglia in MS2 cortex showed increased morphological complexity and loss of P2Y12 and TMEM119 expression. Interestingly, both populations associated with inflammation of the overlying meninges and were time-dependently replicated in an in vivo rat model for progressive MS-like chronic meningeal inflammation. In this recently developed animal model, cortical microglia at 1-month post-induction of experimental meningeal inflammation resembled microglia in MS1 cortex, and microglia at 2 months post-induction acquired a MS2-like phenotype. Furthermore, we observed that MS1 microglia in both MS cortex and the animal model were found closely apposing neuronal cell bodies and to mediate pre-synaptic displacement and phagocytosis, which coincided with a relative sparing of neurons. In contrast, microglia in MS2 cortex were not involved in these synaptic alterations, but instead associated with substantial neuronal loss. Taken together, our results show that in response to meningeal inflammation, microglia acquire two distinct phenotypes that differentially associate with neurodegeneration in the progressive MS cortex. Furthermore, our in vivo data suggests that microglia initially protect neurons from meningeal inflammation-induced cell death by removing pre-synapses from the neuronal soma, but eventually lose these protective properties contributing to neuronal loss.


Asunto(s)
Corteza Cerebral/patología , Meninges/patología , Microglía/patología , Esclerosis Múltiple/patología , Enfermedades Neurodegenerativas/patología , Enfermedades Neuroinflamatorias/patología , Neuronas/patología , Adulto , Anciano , Animales , Muerte Celular , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Meninges/inmunología , Microglía/clasificación , Microglía/inmunología , Microglía/metabolismo , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Enfermedades Neurodegenerativas/inmunología , Fenotipo , Ratas
19.
Virol Sin ; 36(5): 1006-1026, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33770381

RESUMEN

In multiple sclerosis (MS), human endogenous retrovirus W family (HERV-W) envelope protein, pHERV-W ENV, limits remyelination and induces microglia-mediated neurodegeneration. To better understand its role, we examined the soluble pHERV-W antigen from MS brain lesions detected by specific antibodies. Physico-chemical and antigenic characteristics confirmed differences between pHERV-W ENV and syncytin-1. pHERV-W ENV monomers and trimers remained associated with membranes, while hexamers self-assembled from monomers into a soluble macrostructure involving sulfatides in MS brain. Extracellular hexamers are stabilized by internal hydrophobic bonds and external hydrophilic moieties. HERV-W studies in MS also suggest that this diffusible antigen may correspond to a previously described high-molecular-weight neurotoxic factor secreted by MS B-cells and thus represents a major agonist in MS pathogenesis. Adapted methods are now needed to identify encoding HERV provirus(es) in affected cells DNA. The properties and origin of MS brain pHERV-W ENV soluble antigen will allow a better understanding of the role of HERVs in MS pathogenesis. The present results anyhow pave the way to an accurate detection of the different forms of pHERV-W ENV antigen with appropriate conditions that remained unseen until now.


Asunto(s)
Retrovirus Endógenos , Esclerosis Múltiple , Encéfalo , Humanos , Microglía , Solubilidad
20.
Eur J Nucl Med Mol Imaging ; 49(1): 146-163, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33433698

RESUMEN

The 18 kDa translocator protein (TSPO) is a highly conserved protein located in the outer mitochondrial membrane. TSPO binding, as measured with positron emission tomography (PET), is considered an in vivo marker of neuroinflammation. Indeed, TSPO expression is altered in neurodegenerative, neuroinflammatory, and neuropsychiatric diseases. In PET studies, the TSPO signal is often viewed as a marker of microglial cell activity. However, there is little evidence in support of a microglia-specific TSPO expression. This review describes the cellular sources and functions of TSPO in animal models of disease and human studies, in health, and in central nervous system diseases. A discussion of methods of analysis and of quantification of TSPO is also presented. Overall, it appears that the alterations of TSPO binding, their cellular underpinnings, and the functional significance of such alterations depend on many factors, notably the pathology or the animal model under study, the disease stage, and the involved brain regions. Thus, further studies are needed to fully determine how changes in TSPO binding occur at the cellular level with the ultimate goal of revealing potential therapeutic pathways.


Asunto(s)
Receptores de GABA , Tomografía Computarizada por Rayos X , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , Microglía/metabolismo , Tomografía de Emisión de Positrones , Receptores de GABA/genética , Receptores de GABA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA