Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 8356, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433489

RESUMEN

Pyrazinamide (PZA) is an antibiotic used in first- and second-line tuberculosis treatment regimens. Approximately 50% of multidrug-resistant tuberculosis and over 90% of extensively drug-resistant tuberculosis strains are also PZA resistant. Despite the key role played by PZA, its mechanisms of action are not yet fully understood. It has been postulated that pyrazinoic acid (POA), the hydrolyzed product of PZA, could inhibit trans-translation by binding to Ribosomal protein S1 (RpsA) and competing with tmRNA, the natural cofactor of RpsA. Subsequent data, however, indicate that these early findings resulted from experimental artifact. Hence, in this study we assess the capacity of POA to compete with tmRNA for RpsA. We evaluated RpsA wild type (WT), RpsA ∆A438, and RpsA ∆A438 variants with truncations towards the carboxy terminal end. Interactions were measured using Nuclear Magnetic Resonance spectroscopy (NMR), Isothermal Titration Calorimetry (ITC), Microscale Thermophoresis (MST), and Electrophoretic Mobility Shift Assay (EMSA). We found no measurable binding between POA and RpsA (WT or variants). This suggests that RpsA may not be involved in the mechanism of action of PZA in Mycobacterium tuberculosis, as previously thought. Interactions observed between tmRNA and RpsA WT, RpsA ∆A438, and each of the truncated variants of RpsA ∆A438, are reported.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Mycobacterium tuberculosis/metabolismo , Pirazinamida/análogos & derivados , Proteínas Ribosómicas/metabolismo , Antituberculosos/metabolismo , Antituberculosos/uso terapéutico , Proteínas Bacterianas/genética , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Humanos , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Pirazinamida/metabolismo , Pirazinamida/farmacología , Pirazinamida/uso terapéutico , ARN Bacteriano/metabolismo , Proteínas Ribosómicas/genética
2.
Oncogene ; 36(26): 3673-3685, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28263967

RESUMEN

PTEN is a PIP3 phosphatase that antagonizes oncogenic PI3-kinase signalling. Due to its critical role in suppressing the potent signalling pathway, it is one of the most mutated tumour suppressors, especially in brain tumours. It is generally thought that PTEN deficiencies predominantly result from either loss of expression or enzymatic activity. By analysing PTEN in malignant glioblastoma primary cells derived from 16 of our patients, we report mutations that block localization of PTEN at the plasma membrane and nucleus without affecting lipid phosphatase activity. Cellular and biochemical analyses as well as structural modelling revealed that two mutations disrupt intramolecular interaction of PTEN and open its conformation, enhancing polyubiquitination of PTEN and decreasing protein stability. Moreover, promoting mono-ubiquitination increases protein stability and nuclear localization of mutant PTEN. Thus, our findings provide a molecular mechanism for cancer-associated PTEN defects and may lead to a brain cancer treatment that targets PTEN mono-ubiquitination.


Asunto(s)
Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Ubiquitinación/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Núcleo Celular/enzimología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Mutación , Estabilidad Proteica , Transducción de Señal
3.
J Virol ; 81(10): 5144-54, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17360759

RESUMEN

Drug resistance is a major problem affecting the clinical efficacy of antiretroviral agents, including protease inhibitors, in the treatment of infection with human immunodeficiency virus type 1 (HIV-1)/AIDS. Consequently, the elucidation of the mechanisms by which HIV-1 protease inhibitors maintain antiviral activity in the presence of mutations is critical to the development of superior inhibitors. Tipranavir, a nonpeptidic HIV-1 protease inhibitor, has been recently approved for the treatment of HIV infection. Tipranavir inhibits wild-type protease with high potency (K(i) = 19 pM) and demonstrates durable efficacy in the treatment of patients infected with HIV-1 strains containing multiple common mutations associated with resistance. The high potency of tipranavir results from a very large favorable entropy change (-TDeltaS = -14.6 kcal/mol) combined with a favorable, albeit small, enthalpy change (DeltaH = -0.7 kcal/mol, 25 degrees C). Characterization of tipranavir binding to wild-type protease, active site mutants I50V and V82F/I84V, the multidrug-resistant mutant L10I/L33I/M46I/I54V/L63I/V82A/I84V/L90M, and the tipranavir in vitro-selected mutant I13V/V32L/L33F/K45I/V82L/I84V was performed by isothermal titration calorimetry and crystallography. Thermodynamically, the good response of tipranavir arises from a unique behavior: it compensates for entropic losses by actual enthalpic gains or by sustaining minimal enthalpic losses when facing the mutants. The net result is a small loss in binding affinity. Structurally, tipranavir establishes a very strong hydrogen bond network with invariant regions of the protease, which is maintained with the mutants, including catalytic Asp25 and the backbone of Asp29, Asp30, Gly48 and Ile50. Moreover, tipranavir forms hydrogen bonds directly to Ile50, while all other inhibitors do so by being mediated by a water molecule.


Asunto(s)
Farmacorresistencia Viral/genética , Inhibidores de la Proteasa del VIH/metabolismo , VIH-1/efectos de los fármacos , Mutación , Piridinas/metabolismo , Pironas/metabolismo , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Proteasa del VIH/química , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/genética , Humanos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Estructura Molecular , Unión Proteica , Piridinas/farmacología , Pironas/farmacología , Sulfonamidas
4.
Arch Biochem Biophys ; 433(1): 129-43, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15581572

RESUMEN

Nudix hydrolases catalyze the hydrolysis of nucleoside diphosphates linked to other moieties, X, and contain the sequence motif or Nudix box, GX(5)EX(7)REUXEEXGU. The mechanisms of Nudix hydrolases are highly diverse in the position on the substrate at which nucleophilic substitution occurs, and in the number of required divalent cations. While most proceed by associative nucleophilic substitutions by water at specific internal phosphorus atoms of a diphosphate or polyphosphate chain, members of the GDP-mannose hydrolase sub-family catalyze dissociative nucleophilic substitutions, by water, at carbon. The site of substitution is likely determined by the positions of the general base and the entering water. The rate accelerations or catalytic powers of Nudix hydrolases range from 10(9)- to 10(12)-fold. The reactions are accelerated 10(3)-10(5)-fold by general base catalysis by a glutamate residue within, or beyond the Nudix box, or by a histidine beyond the Nudix box. Lewis acid catalysis, which contributes 10(3)-10(5)-fold to the rate acceleration, is provided by one, two, or three divalent cations. One divalent cation is coordinated by two or three conserved residues of the Nudix box, the initial glycine and one or two glutamate residues, together with a remote glutamate or glutamine ligand from beyond the Nudix box. Some Nudix enzymes require one (MutT) or two additional divalent cations (Ap(4)AP), to neutralize the charge of the polyphosphate chain, to help orient the attacking hydroxide or oxide nucleophile, and/or to facilitate the departure of the anionic leaving group. Additional catalysis (10-10(3)-fold) is provided by the cationic side chains of lysine and arginine residues and by H-bond donation by tyrosine residues, to orient the general base, or to promote the departure of the leaving group. The overall rate accelerations can be explained by both independent and cooperative effects of these catalytic components.


Asunto(s)
Pirofosfatasas/química , Pirofosfatasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arginina/química , Catálisis , Cationes Bivalentes/química , Cationes Bivalentes/metabolismo , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Ácido Glutámico/química , Glicina/química , Enlace de Hidrógeno , Hidrólisis , Cinética , Ligandos , Lisina/química , Modelos Moleculares , Modelos Estructurales , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Pirofosfatasas/genética , Especificidad por Sustrato , Agua/química , Hidrolasas Nudix
5.
Biochemistry ; 40(50): 15135-42, 2001 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-11735396

RESUMEN

We report the characterization of 5-methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4,7-dione (ES936) as a mechanism-based inhibitor of NQO1. Inactivation of NQO1 by ES936 was time- and concentration-dependent and required the presence of a pyridine nucleotide cofactor consistent with a need for metabolic activation. That ES936 was an efficient inhibitor was demonstrated in these studies by the low partition ratio (1.40 +/- 0.03). The orientation of ES936 in the active site of NQO1 was examined by X-ray crystallography and found to be opposite to that observed for other indolequinones acting as substrates. ES936 was oriented in such a manner that, after enzymatic reduction and loss of a nitrophenol leaving group, a reactive iminium species was located in close proximity to nucleophilic His 162 and Tyr 127 and Tyr 129 residues in the active site. To determine if ES936 was covalently modifying NQO1, ES936-treated protein was analyzed by electrospray ionization liquid chromatography/mass spectrometry (ESI-LC/MS). The control NQO1 protein had a mass of 30864 +/- 6 Da (n = 20, theoretical, 30868.6 Da) which increased by 217 Da after ES936 treatment (31081 +/- 7 Da, n = 20) in the presence of NADH. The shift in mass was consistent with adduction of NQO1 by the reactive iminium derived from ES936 (M + 218 Da). Chymotryptic digestion of the protein followed by LC/MS analysis located a tetrapeptide spanning amino acids 126-129 which was adducted with the reactive iminium species derived from ES936. LC/MS/MS analysis of the peptide fragment confirmed adduction of either Tyr 127 or Tyr 129 residues. This work demonstrates that ES936 is a potent mechanism-based inhibitor of NQO1 and may be a useful tool in defining the role of NQO1 in cellular systems and in vivo.


Asunto(s)
Indolquinonas , Indoles/química , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , NAD(P)H Deshidrogenasa (Quinona)/química , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Técnicas In Vitro , Indoles/farmacología , Cinética , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Espectrometría de Masa por Ionización de Electrospray
6.
Structure ; 9(8): 659-67, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11587640

RESUMEN

BACKGROUND: NAD(P)H:quinone acceptor oxidoreductase (QR1) protects animal cells from the deleterious and carcinogenic effects of quinones and other electrophiles. Remarkably, the same enzyme activates cancer prodrugs that become cytotoxic only after two-electron reduction. QR1's ability to bioactivate quinones and its elevated expression in many human solid tumors makes this protein an excellent target for enzyme-directed drug development. Until now, structural analysis of the mode of binding of chemotherapeutic compounds to QR1 was based on model building using the structures of complexes with simple substrates; no structure of complexes of QR1 with chemotherapeutic prodrugs had been reported. RESULTS: Here we report the high-resolution crystal structures of complexes of QR1 with three chemotherapeutic prodrugs: RH1, a water-soluble homolog of dimethylaziridinylbenzoquinone; EO9, an aziridinylindolequinone; and ARH019, another aziridinylindolequinone. The structures, determined to resolutions of 2.0 A, 2.5 A, and 1.86 A, respectively, were refined to R values below 21% with excellent geometry. CONCLUSIONS: The structures show that compounds can bind to QR1 in more than one orientation. Surprisingly, the two aziridinylindolequinones bind to the enzyme in different orientations. The results presented here reveal two new factors that must be taken into account in the design of prodrugs targeted for activation by QR1: the enzyme binding site is highly plastic and changes to accommodate binding of different substrates, and homologous drugs with different substituents may bind to QR1 in different orientations. These structural insights provide important clues for the optimization of chemotherapeutic compounds that utilize this reductive bioactivation pathway.


Asunto(s)
Antineoplásicos/química , Diseño de Fármacos , Quinona Reductasas/química , Quinonas/uso terapéutico , Antineoplásicos/farmacología , Benzoquinonas/química , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Cinética , Modelos Químicos , Unión Proteica , Quinonas/química , Proteínas Recombinantes/química
7.
Proteins ; 43(4): 420-32, 2001 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-11340659

RESUMEN

NAD(P)H:quinone oxidoreductase type 1 (QR1, NQO1, formerly DT-diaphorase; EC 1.6.99.2) is an FAD-containing enzyme that catalyzes the nicotinamide nucleotide-dependent reduction of quinones, quinoneimines, azo dyes, and nitro groups. Animal cells are protected by QR1 from the toxic and neoplastic effects of quinones and other electrophiles. Alternatively, in tumor cells QR can activate a number of cancer chemotherapeutic agents such as mitomycins and aziridylbenzoquinones. Thus, the same enzyme that protects the organism from the deleterious effects of quinones can activate cytotoxic chemotherapeutic prodrugs and cause cancer cell death. The catalytic mechanism of QR includes an important initial step in which FAD is reduced by NAD(P)H. The unfavorable charge separation that results must be stabilized by the protein. The details of this charge stabilization step are inaccessible to easy experimental verification but can be studied by quantum chemistry methods. Here we report ab initio quantum mechanical calculations in and around the active site of the enzyme that provide information about the fine details of the contribution of the protein to the stabilization of the reduced flavin. The results show that (1) protein interactions provide approximately 2 kcal/mol to stabilize the planar conformation of the reduced flavin isoalloxazine ring observed in the X-ray structure; (2) the charge separation present in the reduced planar form of the flavin is stabilized by interactions with groups of the protein; (3) even after stabilization, the reduction potential of the cofactor remains more negative than that of the free flavin, making it a better reductant for a larger variety of quinones; and (4) the more negative reduction potential may also result in faster kinetics for the quinone reduction step.


Asunto(s)
Flavinas/química , NAD(P)H Deshidrogenasa (Quinona)/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Estabilidad de Enzimas , Flavina-Adenina Dinucleótido/metabolismo , Humanos , Modelos Químicos , Modelos Moleculares , NADP/metabolismo , Oxidación-Reducción , Electricidad Estática , Termodinámica
8.
Nat Struct Biol ; 8(5): 467-72, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11323725

RESUMEN

Regulation of cellular levels of ADP-ribose is important in preventing nonenzymatic ADP-ribosylation of proteins. The Escherichia coli ADP-ribose pyrophosphatase, a Nudix enzyme, catalyzes the hydrolysis of ADP-ribose to ribose-5-P and AMP, compounds that can be recycled as part of nucleotide metabolism. The structures of the apo enzyme, the active enzyme and the complex with ADP-ribose were determined to 1.9 A, 2.7 A and 2.3 A, respectively. The structures reveal a symmetric homodimer with two equivalent catalytic sites, each formed by residues of both monomers, requiring dimerization through domain swapping for substrate recognition and catalytic activity. The structures also suggest a role for the residues conserved in each Nudix subfamily. The Nudix motif residues, folded as a loop-helix-loop tailored for pyrophosphate hydrolysis, compose the catalytic center; residues conferring substrate specificity occur in regions of the sequence removed from the Nudix motif. This segregation of catalytic and recognition roles provides versatility to the Nudix family.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli/enzimología , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cationes Bivalentes/metabolismo , Secuencia Conservada , Cristalografía por Rayos X , Dimerización , Activación Enzimática , Hidrólisis , Magnesio/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia , Relación Estructura-Actividad , Especificidad por Sustrato , Hidrolasas Nudix
9.
Proteins ; Suppl 4: 93-107, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11013404

RESUMEN

The conformational entropy is the largest unfavorable effect that must be overcome during protein folding and binding. Accurate predictions of protein stability and binding affinity require a precise way of evaluating conformational entropy changes. Previously we implemented a computational approach aimed at estimating conformational entropy changes in peptides (D'Aquino et al., Proteins 1996;25:143-156; Lee et al., Proteins 1994;20:68-84). Here we extend this approach to estimate conformational entropy changes in molecules of pharmaceutical interest. Calculations were carried out for a set of 36 small organic molecules containing one dihedral angle and different functional groups around the central bond. Entropy changes were calculated for these molecules as the difference between the entropy of the free molecule and the entropy of the molecule when it is constrained to occupy a particular range of dihedrals, as in the bound state. Entropy changes for binding of larger molecules can be estimated assuming additivity on a per bond basis. Thus, the results presented here provide an initial toolbox of conformational entropy values in the form of a lookup table that can be used in the estimation of entropy changes associated with binding processes of more complex molecules. To facilitate their use, the values were parameterized in terms of the number and type of atoms neighboring each specific dihedral. Both methods, lookup table and parameterized equation, provide a very fast way of evaluating conformational entropy changes, making them suitable for fast screening algorithms.


Asunto(s)
Dipéptidos/química , Alanina/química , Glicina/química , Conformación Proteica , Termodinámica
10.
Free Radic Biol Med ; 29(3-4): 241-5, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11035252

RESUMEN

The metabolism of quinone compounds presents one source of oxidative stress in mammals, as many pathways proceed by mechanisms that generate reactive oxygen species as by-products. One defense against quinone toxicity is the enzyme NAD(P)H:quinone oxidoreductase type 1 (QR1), which metabolizes quinones by a two-electron reduction mechanism, thus averting production of radicals. QR1 is expressed in the cytoplasm of many tissues, and is highly inducible. A closely related homologue, quinone reductase type 2 (QR2), has been identified in several mammalian species. QR2 is also capable of reducing quinones to hydroquinones, but unlike QR1, cannot use NAD(P)H. X-ray crystallographic studies of QR1 and QR2 illustrate that despite their different biochemical properties, these enzymes have very similar three-dimensional structures. In particular, conserved features of the active sites point to the close relationship between these two enzymes.


Asunto(s)
Citosol/enzimología , Quinona Reductasas/química , Animales , Sitios de Unión , Coenzimas/metabolismo , Cristalografía por Rayos X , Humanos , Metales/metabolismo , Modelos Moleculares , Conformación Proteica , Quinona Reductasas/metabolismo , Quinonas/metabolismo
11.
Cell Mol Life Sci ; 57(8-9): 1236-59, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11028916

RESUMEN

Many bioactive peptides must be amidated at their carboxy terminus to exhibit full activity. Surprisingly, the amides are not generated by a transamidation reaction. Instead, the hormones are synthesized from glycine-extended intermediates that are transformed into active amidated hormones by oxidative cleavage of the glycine N-C alpha bond. In higher organisms, this reaction is catalyzed by a single bifunctional enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The PAM gene encodes one polypeptide with two enzymes that catalyze the two sequential reactions required for amidation. Peptidylglycine alpha-hydroxylating monooxygenase (PHM; EC 1.14.17.3) catalyzes the stereospecific hydroxylation of the glycine alpha-carbon of all the peptidylglycine substrates. The second enzyme, peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL; EC 4.3.2.5), generates alpha-amidated peptide product and glyoxylate. PHM contains two redox-active copper atoms that, after reduction by ascorbate, catalyze the reduction of molecular oxygen for the hydroxylation of glycine-extended substrates. The structure of the catalytic core of rat PHM at atomic resolution provides a framework for understanding the broad substrate specificity of PHM, identifying residues critical for PHM activity, and proposing mechanisms for the chemical and electron-transfer steps in catalysis. Since PHM is homologous in sequence and mechanism to dopamine beta-monooxygenase (DBM; EC 1.14.17.1), the enzyme that converts dopamine to norepinephrine during catecholamine biosynthesis, these structural and mechanistic insights are extended to DBM.


Asunto(s)
Amidina-Liasas/metabolismo , Cobre/metabolismo , Dopamina beta-Hidroxilasa/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Complejos Multienzimáticos , Amidina-Liasas/química , Amidina-Liasas/genética , Secuencia de Aminoácidos , Animales , Dopamina beta-Hidroxilasa/química , Dopamina beta-Hidroxilasa/genética , Humanos , Oxigenasas de Función Mixta/química , Datos de Secuencia Molecular , Conformación Proteica , Ratas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
12.
Methods Enzymol ; 323: 167-77, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10944752

RESUMEN

Changes in configurational entropy represent one of the major contributions to the thermodynamics of folding, binding, and oligomerization. Methods have been developed to estimate changes in the entropy of the backbone and side chains, and for the loss of translational entropy. These methods have been used in combination with empirical methods that provide estimates of the changes in entropy of solvation as well as estimates of the changes of enthalpy. The results of such calculations are in excellent agreement with experimentally observed values.


Asunto(s)
Entropía , Pliegue de Proteína , Proteínas/química , Sustancias Macromoleculares , Matemática , Unión Proteica , Programas Informáticos , Solventes , Termodinámica
13.
Proteins ; 40(3): 378-88, 2000 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-10861929

RESUMEN

Galectin-1, S-type beta-galactosyl-binding lectins present in vertebrate and invertebrate species, are dimeric proteins that participate in cellular adhesion, activation, growth regulation, and apoptosis. Two high-resolution crystal structures of B. arenarum galectin-1 in complex with two related carbohydrates, LacNAc and TDG, show that the topologically equivalent hydroxyl groups in the two disaccharides exhibit identical patterns of interaction with the protein. Groups that are not equivalent between the two sugars present in the second moiety of the disaccharide, interact differently with the protein, but use the same number and quality of interactions. The structures show additional protein-carbohydrate interactions not present in previously reported lectin-lactose complexes. These contacts provide an explanation for the enhanced affinity of galectin-1 for TDG and LacNAc relative to lactose. Galectins are in dimer-monomer equilibrium at physiological protein concentrations, suggesting that this equilibrium may be involved in organ-specific regulation of activity. Comparison of B. arenarum with other galectin-1 structures shows that among different galectins there are significant changes in accessible surface area buried upon dimer formation, providing a rationale for the variations observed in the free-energies of dimerization. The structure of the B. arenarum galectin-1 has a large cleft with a strong negative potential that connects the two binding sites at the surface of the protein. Such a striking characteristic suggests that this cleft is probably involved in interactions of the galectin with other intra or extra-cellular proteins. Proteins 2000;40:378-388.


Asunto(s)
Amino Azúcares/química , Hemaglutininas/química , Lectinas/química , Tiogalactósidos/química , Secuencia de Aminoácidos , Animales , Bufonidae , Simulación por Computador , Secuencia Conservada , Cristalografía , Cisteína/química , Dimerización , Femenino , Galectina 1 , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Ovario , Oxidación-Reducción , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Propiedades de Superficie
14.
Proc Natl Acad Sci U S A ; 97(7): 3177-82, 2000 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-10706635

RESUMEN

NAD(P)H/quinone acceptor oxidoreductase (QR1, NQO1, formerly DT-diaphorase; EC ) protects animal cells from the deleterious and carcinogenic effects of quinones and other electrophiles. In this paper we report the apoenzyme structures of human (at 1.7-A resolution) and mouse (2.8 A) QR1 and the complex of the human enzyme with the substrate duroquinone (2.5 A) (2,3,5, 6-tetramethyl-p-benzoquinone). In addition to providing a description and rationale of the structural and catalytic differences among several species, these structures reveal the changes that accompany substrate or cofactor (NAD) binding and release. Tyrosine-128 and the loop spanning residues 232-236 close the binding site, partially occupying the space left vacant by the departing molecule (substrate or cofactor). These changes highlight the exquisite control of access to the catalytic site that is required by the ping-pong mechanism in which, after reducing the flavin, NAD(P)(+) leaves the catalytic site and allows substrate to bind at the vacated position. In the human QR1-duroquinone structure one ring carbon is significantly closer to the flavin N5, suggesting a direct hydride transfer to this atom.


Asunto(s)
NAD(P)H Deshidrogenasa (Quinona)/química , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Datos de Secuencia Molecular , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Especificidad por Sustrato
15.
J Bioenerg Biomembr ; 32(5): 517-21, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15254387

RESUMEN

The most commonly quoted mechanism of the coupling between the electrochemical proton gradient and the formation of ATP from ADP and P(i) assumes that all states of the F(1) portion of the ATP synthase have beta subunits in "tight," "loose," and "open" conformations. Models based on this assumption are inconsistent with some of the available experimental evidence. A mechanism that includes an additional beta subunit conformation, "closed," observed in the rat liver structure overcomes these difficulties.


Asunto(s)
Adenosina Trifosfato/biosíntesis , ATPasas de Translocación de Protón/metabolismo , Animales , Dominio Catalítico , Electroquímica , Mitocondrias Hepáticas/enzimología , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína , ATPasas de Translocación de Protón/química , Ratas
16.
J Immunol ; 163(11): 6244-50, 1999 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-10570317

RESUMEN

Autoantibodies to thyroglobulin (Tg) are a prominent feature of the two autoimmune thyroid diseases, chronic lymphocytic (Hashimoto's) thyroiditis and Graves' disease. Similar autoantibodies are found in the serum of many normal individuals without evidence of thyroid disease. Previous studies have indicated that patients with autoimmune thyroid disease recognize epitopes of Tg which are not usually recognized by normal individuals. The goal of this investigation was to identify peptide fragments of Tg bearing these disease-associated epitopes. For this purpose, we utilized a panel of mAbs that bind to different epitopes of the Tg molecule. One of these mAbs (137C1) reacted with an epitope that was also recognized by the sera of patients with autoimmune thyroiditis. In the present study, we show that two peptides (15 and 23 kDa) that reacted with mAb 137C1 are located in different parts of the Tg molecule. Each peptide inhibited the binding of mAb 137C1 to the other peptide and to the intact Tg, indicating that the same epitope was represented on the two peptides. Loops and helices of the secondary structure of the two peptides might be involved in the conformational epitope recognized by mAb 137C1. A striking finding of this study is that two apparently unrelated fragments of the Tg molecule bind to the same mAb. These findings may have important ramifications with regard to epitope spread and the progression of the autoimmune response to disease.


Asunto(s)
Autoanticuerpos/sangre , Autoantígenos/inmunología , Enfermedad de Graves/sangre , Tiroglobulina/inmunología , Tiroiditis Autoinmune/sangre , Secuencia de Aminoácidos , Anticuerpos Monoclonales , Linfocitos B/inmunología , Mapeo Epitopo , Enfermedad de Graves/etiología , Humanos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Análisis de Secuencia de Proteína , Tiroiditis Autoinmune/etiología
17.
Nat Struct Biol ; 6(10): 976-83, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10504734

RESUMEN

Peptide amidation is a ubiquitous posttranslational modification of bioactive peptides. Peptidylglycine alpha-hydroxylating monooxygenase (PHM; EC 1.14.17.3), the enzyme that catalyzes the first step of this reaction, is composed of two domains, each of which binds one copper atom. The coppers are held 11 A apart on either side of a solvent-filled interdomain cleft, and the PHM reaction requires electron transfer between these sites. A plausible mechanism for electron transfer might involve interdomain motion to decrease the distance between the copper atoms. Our experiments show that PHM catalytic core (PHMcc) is enzymatically active in the crystal phase, where interdomain motion is not possible. Instead, structures of two states relevant to catalysis indicate that water, substrate and active site residues may provide an electron transfer pathway that exists only during the PHM catalytic cycle.


Asunto(s)
Electrones , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Complejos Multienzimáticos , Animales , Sitios de Unión , Catálisis , Dominio Catalítico , Cobre/química , Cobre/metabolismo , Cristalización , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Oxígeno/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Ratas , Solventes , Relación Estructura-Actividad
18.
Biochemistry ; 38(31): 9881-6, 1999 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-10433694

RESUMEN

In mammals, two separate but homologous cytosolic quinone reductases have been identified: NAD(P)H:quinone oxidoreductase type 1 (QR1) (EC 1.6.99.2) and quinone reductase type 2 (QR2). Although QR1 and QR2 are nearly 50% identical in protein sequence, they display markedly different catalytic properties and substrate specificities. We report here two crystal structures of QR2: in its native form and bound to menadione (vitamin K(3)), a physiological substrate. Phases were obtained by molecular replacement, using our previously determined rat QR1 structure as the search model. QR2 shares the overall fold of the major catalytic domain of QR1, but lacks the smaller C-terminal domain. The FAD binding sites of QR1 and QR2 are very similar, but their hydride donor binding sites are considerably different. Unexpectedly, we found that QR2 contains a specific metal binding site, which is not present in QR1. Two histidine nitrogens, one cysteine thiol, and a main chain carbonyl group are involved in metal coordination. The metal binding site is solvent-accessible, and is separated from the FAD cofactor by a distance of about 13 A.


Asunto(s)
Flavoproteínas/química , Metaloproteínas/química , NAD(P)H Deshidrogenasa (Quinona)/química , Animales , Sitios de Unión , Cobre/metabolismo , Cristalización , Cristalografía por Rayos X , Cisteína/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Flavoproteínas/metabolismo , Histidina/metabolismo , Humanos , Metaloproteínas/metabolismo , Ratones , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Ratas , Soluciones , Vitamina K/metabolismo
20.
Proc Natl Acad Sci U S A ; 95(19): 11065-70, 1998 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-9736690

RESUMEN

During mitochondrial ATP synthesis, F1-ATPase-the portion of the ATP synthase that contains the catalytic and regulatory nucleotide binding sites-undergoes a series of concerted conformational changes that couple proton translocation to the synthesis of the high levels of ATP required for cellular function. In the structure of the rat liver F1-ATPase, determined to 2.8-A resolution in the presence of physiological concentrations of nucleotides, all three beta subunits contain bound nucleotide and adopt similar conformations. This structure provides the missing configuration of F1 necessary to define all intermediates in the reaction pathway. Incorporation of this structure suggests a mechanism of ATP synthesis/hydrolysis in which configurations of the enzyme with three bound nucleotides play an essential role.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Mitocondrias Hepáticas/enzimología , ATPasas de Translocación de Protón/química , Complejos de ATP Sintetasa , Animales , Sitios de Unión/fisiología , Cristalización , Cristalografía por Rayos X , Modelos Moleculares , Complejos Multienzimáticos/química , Nucleótidos/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Unión Proteica/fisiología , Conformación Proteica , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...