Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 73(1): 29-38, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27568187

RESUMEN

The Huanglong park area of the Sichuan Province of China is a unique scenic area of the world. It is known for its thousands of aquamarine-colored pools that are formed behind naturally formed rimstone dams of travertine (calcite) along a cold water stream. The travertine, based on its crystalline structural analysis, is of biological origin. This makes sense since the temperature of the waters of Huanglong varies from 5 to 7 °C and thus geochemical crystallization does not occur as it does in other locations around the world possessing thermal pools whose structures are primarily formed through cooling processes. Fungi and bacteria were discovered associated with both leaves associated with the calcite dams as well as in the older parts of well-established dams. Several species of Phytium, a phycomycete and an endophyte, accounted for over 45 % of all of the fungi successfully isolated from the well-established dam samples and at least 85 % in the floating leaf samples. Saprolegnia spp. (Phycomycetes) along with Phoma spp. (Ascomycetes) were noted along with Mortierella sp. as other dam-associated fungi. The fungal hyphae observed on dead leaf material as well as in the calcite dams directly served as nucleation points for the formation of crystalline CaCO3. Eventually, these crystals grow large enough to fuse to make calcite plates which form the main structural feature of all of the travertine dams in this area. Interestingly, each of the individual crystals associated with the dams has an associated hole in its core where a fungal hypha used to reside as observed by scanning electron microscopy. While diatoms were present in the analysis, they too seem to contribute to the structure of the dams but in a minor way. The only bacteria isolated from the older dam of this aquatic environment were Pseudomonas spp. and their role in dam formation is uncertain. Huanglong is a unique and beautiful place, and the water features present in this area can definitely be attributed to those fungal architects that encourage calcite crystal formation.


Asunto(s)
Ascomicetos/aislamiento & purificación , Carbonato de Calcio/metabolismo , Diatomeas/aislamiento & purificación , Mortierella/aislamiento & purificación , Phycomyces/aislamiento & purificación , Pseudomonas/aislamiento & purificación , Ascomicetos/clasificación , Biodiversidad , China , Frío , Cristalización , Microscopía Electrónica de Rastreo , Mortierella/clasificación , Phycomyces/clasificación , Pseudomonas/clasificación , Ríos , Microbiología del Agua
2.
Int J Environ Res Public Health ; 11(12): 13084-96, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25522049

RESUMEN

Diatoms are a highly diversified group of algae that are widely distributed in aquatic ecosystems, and various species have different nutrient and temperature requirements for optimal growth. Here, we describe unusual psychrophilic diatoms of Cymbella in a travertine deposition environment in southwestern China in winter season. Travertine surfaces are colonized by these psychrophilic diatoms, which form biofilms of extracellular polysaccharide substances (EPS) with active metabolic activities in extremely cold conditions. The travertine in Huanglong, is a typical single crystalline calcite with anisotropic lattice distortions of unit cell parameters along axes of a and c, and this structure is suggestive of some level of metabolic mediation on mineralization. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) results further confirmed the occurrence of biogenic distortion of the crystal lattice of travertine calcite. Overall, our results imply that the metabolic influence of psychrophilic diatoms may be particularly important for promoting formation and dissolution of travertine in extremely cold environments of Huanglong. The EPS of psychrophilic diatoms will protect travertine from HCO3- etching and provide template for forming travertine when water re-flowing, in warm season.


Asunto(s)
Biopelículas , Frío , Diatomeas/fisiología , Agua Dulce/análisis , Sedimentos Geológicos/química , China , Manantiales de Aguas Termales/química , Estaciones del Año , Espectroscopía de Absorción de Rayos X
3.
Ann Bot ; 107(1): 39-47, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20961923

RESUMEN

BACKGROUND AND AIMS: Increasing evidence challenges the conventional perception that orchids are the most distinct example of floral diversification due to floral or prezygotic isolation. Regarding the relationship between co-flowering plants, rewarding and non-rewarding orchids in particular, few studies have investigated whether non-rewarding plants affect the pollination success of rewarding plants. Here, floral isolation and mutual effects between the rewarding orchid Galearis diantha and the non-rewarding orchid Ponerorchis chusua were investigated. METHODS: Flowering phenological traits were monitored by noting the opening and wilting dates of the chosen individual plants. The pollinator pool and pollinator behaviour were assessed from field observations. Key morphological traits of the flowers and pollinators were measured directly in the field. Pollinator limitation and interspecific compatibility were evaluated by hand-pollination experiments. Fruit set was surveyed in monospecific and heterospecific plots. KEY RESULTS: The species had overlapping peak flowering periods. Pollinators of both species displayed a certain degree of constancy in visiting each species, but they also visited other flowers before landing on the focal orchids. A substantial difference in spur size between the species resulted in the deposition of pollen on different regions of the body of the shared pollinator. Hand-pollination experiments revealed that fruit set was strongly pollinator-limited in both species. No significant difference in fruit set was found between monospecific plots and heterospecific plots. CONCLUSIONS: A combination of mechanical isolation and incomplete ethological isolation eliminates the possibility of pollen transfer between the species. These results do not support either the facilitation or competition hypothesis regarding the effect of nearby rewarding flowers on non-rewarding plants. The absence of a significant effect of non-rewarding P. chusua on rewarding G. diantha can be ascribed to low levels of overlap between the pollinator pools of two species.


Asunto(s)
Insectos/fisiología , Orchidaceae/fisiología , Polinización , Animales , China , Flores/anatomía & histología , Flores/fisiología , Orchidaceae/crecimiento & desarrollo , Reproducción , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA