Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Neurol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858284

RESUMEN

BACKGROUND: Distinguishing between viral encephalitis (VE) and autoimmune limbic encephalitis (ALE) presents a clinical challenge due to the overlap in symptoms. We aimed to develop and validate a diagnostic prediction model to differentiate VE and ALE. METHODS: A prospective observational multicentre cohort study, which continuously enrolled patients diagnosed with either ALE or VE from October 2011 to April 2023. The demographic data, clinical features, and laboratory test results were collected and subjected to logistic regression analyses. The model was displayed as a web-based nomogram and then modified into a scored prediction tool. Model performance was assessed in both derivation and external validation cohorts. RESULTS: A total of 2423 individuals were recruited, and 1001 (496 VE, 505 ALE) patients were included. Based on the derivation cohort (389 VE, 388 ALE), the model was developed with eight variables including age at onset, acuity, fever, headache, nausea/vomiting, psychiatric or memory complaints, status epilepticus, and CSF white blood cell count. The model showed good discrimination and calibration in both derivation (AUC 0.890; 0.868-0.913) and external validation (107 VE, 117 ALE, AUC 0.872; 0.827-0.917) cohorts. The scored prediction tool had a total point that ranged from - 4 to 10 also showing good discrimination and calibration in both derivation (AUC 0.885, 0.863-0.908) and external validation (AUC 0.868, 0.823-0.913) cohorts. CONCLUSIONS: The prediction model provides a reliable and user-friendly tool for differentiating between the VE and ALE, which would benefit early diagnosis and appropriate treatment and alleviate economic burdens on both patients and society.

2.
Sci Adv ; 10(24): eadk6063, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38865456

RESUMEN

Schizophrenia lacks a clear definition at the neuroanatomical level, capturing the sites of origin and progress of this disorder. Using a network-theory approach called epicenter mapping on cross-sectional magnetic resonance imaging from 1124 individuals with schizophrenia, we identified the most likely "source of origin" of the structural pathology. Our results suggest that the Broca's area and adjacent frontoinsular cortex may be the epicenters of neuroanatomical pathophysiology in schizophrenia. These epicenters can predict an individual's response to treatment for psychosis. In addition, cross-diagnostic similarities based on epicenter mapping over of 4000 individuals diagnosed with neurological, neurodevelopmental, or psychiatric disorders appear to be limited. When present, these similarities are restricted to bipolar disorder, major depressive disorder, and obsessive-compulsive disorder. We provide a comprehensive framework linking schizophrenia-specific epicenters to multiple levels of neurobiology, including cognitive processes, neurotransmitter receptors and transporters, and human brain gene expression. Epicenter mapping may be a reliable tool for identifying the potential onset sites of neural pathophysiology in schizophrenia.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Esquizofrenia , Esquizofrenia/patología , Esquizofrenia/diagnóstico por imagen , Humanos , Neuroimagen/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Adulto , Mapeo Encefálico/métodos , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Persona de Mediana Edad
3.
Neurol Sci ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38653915

RESUMEN

OBJECTIVE: To analyze the local functional activity and connectivity features of the brain associated with drug response inpatients newly diagnosed with epilepsy (NDE) who are naïve to anti-seizure medication (ASM). METHODS: Recruited patients, underwent functional magnetic resonance imaging at baseline, and were assigned to the well-controlled (WC, n = 28) or uncontrolled (UC, n = 11) groups based on their response to ASM. Healthy participants were included in the control group (HC, n = 29). The amplitudes of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were used to measure local functional activity, and voxel-wise degree centrality (DC) and seed-based functional connectivity (FC) were used to evaluate the connecting intensity of the brain areas. RESULTS: Compared to the HC and WC groups, the UC group had higher ALFF values in the left posterior central gyrus (PoCG.L) and left inferior temporal gyrus (ITG.L) and higher DC in the bilateral PoCG (Gaussian random field correction, voxel-level P < 0.001, and cluster-level P < 0.05). Both PoCG and ITG.L in the UC group showed stronger FC with multiple brain regions, mainly located in the occipital and temporal lobes, compared to the HC or WC group, while the WC group showed decreased or similar FC compared to the HC group. INTERPRETATION: Excessive enhancement of brain functional activity or connecting intensity in ASM-naïve patients with NDE may be associated with a higher risk of poor drug response.

4.
Nat Commun ; 15(1): 2221, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472252

RESUMEN

Artificial intelligence provides an opportunity to try to redefine disease subtypes based on similar pathobiology. Using a machine-learning algorithm (Subtype and Stage Inference) with cross-sectional MRI from 296 individuals with focal epilepsy originating from the temporal lobe (TLE) and 91 healthy controls, we show phenotypic heterogeneity in the pathophysiological progression of TLE. This study was registered in the Chinese Clinical Trials Registry (number: ChiCTR2200062562). We identify two hippocampus-predominant phenotypes, characterized by atrophy beginning in the left or right hippocampus; a third cortex-predominant phenotype, characterized by hippocampus atrophy after the neocortex; and a fourth phenotype without atrophy but amygdala enlargement. These four subtypes are replicated in the independent validation cohort (109 individuals). These subtypes show differences in neuroanatomical signature, disease progression and epilepsy characteristics. Five-year follow-up observations of these individuals reveal differential seizure outcomes among subtypes, indicating that specific subtypes may benefit from temporal surgery or pharmacological treatment. These findings suggest a diverse pathobiological basis underlying focal epilepsy that potentially yields to stratification and prognostication - a necessary step for precise medicine.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Inteligencia Artificial , Estudios Transversales , Encéfalo , Hipocampo/patología , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático , Atrofia/patología
5.
Ther Adv Neurol Disord ; 17: 17562864231224110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250317

RESUMEN

Background: Paroxysmal kinesigenic dyskinesia (PKD) is a rare neurological disorder, characterized by attacks of involuntary movements triggered by sudden action. Variants in proline-rich transmembrane protein 2 (PRRT2) are the most common genetic cause of PKD. Objective: The objective was to investigate the clinical and genetic characteristics of PKD and to establish genotype-phenotype correlations. Methods: We enrolled 219 PKD patients, documented their clinical information and performed PRRT2 screening using Sanger sequencing. Whole exome sequencing was performed on 49 PKD probands without PRRT2 variants. Genotype-phenotype correlation analyses were conducted on the probands. Results: Among 219 PKD patients (99 cases from 39 families and 120 sporadic cases), 16 PRRT2 variants were identified. Nine variants (c.879+4A>G, c.879+5G>A, c.856G>A, c.955G>T, c.884G>C, c.649C>T, c.649dupC, c.649delC and c.696_697delCA) were previously known, while seven were novel (c.367_403del, c.347_348delAA, c.835C>T, c.116dupC, c.837_838insC, c.916_937del and c.902G>A). The mean interval from onset to diagnosis was 7.94 years. Compared to patients without PRRT2 variants, patients with the variants were more likely to have a positive family history, an earlier age of onset and a higher prevalence of falls during pre-treatment attacks (27.14% versus 8.99%, respectively). Patients with truncated PRRT2 variants tend to have bilateral attacks. We identified two transmembrane protein 151A (TMEM151A) variants including a novel variant (c.368G>C) and a reported variant (c.203C>T) in two PRRT2-negative probands with PKD. Conclusion: These findings provide insights on the clinical characteristics, diagnostic timeline and treatment response of PKD patients. PKD patients with truncated PRRT2 variants may tend to have more severe paroxysmal symptoms. This study expands the spectrum of PRRT2 and TMEM151A variants. Carbamazepine and oxcarbazepine are both used as a first-line treatment choice for PKD patients.

6.
Neuroimage Clin ; 40: 103536, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37944396

RESUMEN

OBJECTIVE: The purpose of this study was to assess the differences of topological characteristic and rich club organization between temporal lobe epilepsy (TLE) patients with focal seizure (FS) only and those with focal to bilateral tonic-clonic seizures (FBTCS). METHODS: We recruited 130 unilateral TLE patients, of which 57 patients with FS only and 73 patients with both FS and FBTCS, and 68 age- and gender-matched healthy controls (HC). Whole-brain networks were constructed based on diffusion weighted imaging data. Graph theory was applied to quantify the topological network metrics and rich club organization. Network-based statistic (NBS) analysis was administered to investigate the difference in edge-wise connectivity strength. The non-parametric permutation test was applied to evaluate the differences between groups. Benjamini-Hochberg FDR at the alpha of 5% was carried out for multiple comparations. RESULTS: In comparison with HC, both the FS and FBTCS group displayed a significant reduction in whole-brain connectivity strength and global efficiency. The FBTCS group showed lower connectivity strength both in the rich club and feeder connections compared to HC. The FS group had lower connectivity strength in the feeder and local connections compared to HC. NBS analysis revealed a wider range of decreased connectivity strength in the FBTCS group, involving 90% of the rich club regions, mainly affecting temporal-subcortical, frontal-parietal, and frontal-temporal lobe, the majority decreasing connections were between temporal lobe and stratum. While the decreased connectivity strength in the FS group were relatively local, involving 50% of rich club regions, mainly concentrated on the temporal-subcortical lobe. CONCLUSIONS: Network integration was reduced in TLE. TLE with FBTCS selectively disrupted the rich club regions, while TLE with FS only were more likely to affect the non-rich club regions, emphasizing the contribution of rich club organization to seizure generalization.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Imagen por Resonancia Magnética , Convulsiones/diagnóstico por imagen , Encéfalo , Lóbulo Temporal/diagnóstico por imagen
7.
Brain ; 146(11): 4702-4716, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37807084

RESUMEN

Artificial intelligence (AI)-based tools are widely employed, but their use for diagnosis and prognosis of neurological disorders is still evolving. Here we analyse a cross-sectional multicentre structural MRI dataset of 696 people with epilepsy and 118 control subjects. We use an innovative machine-learning algorithm, Subtype and Stage Inference, to develop a novel data-driven disease taxonomy, whereby epilepsy subtypes correspond to distinct patterns of spatiotemporal progression of brain atrophy.In a discovery cohort of 814 individuals, we identify two subtypes common to focal and idiopathic generalized epilepsies, characterized by progression of grey matter atrophy driven by the cortex or the basal ganglia. A third subtype, only detected in focal epilepsies, was characterized by hippocampal atrophy. We corroborate external validity via an independent cohort of 254 people and confirm that the basal ganglia subtype is associated with the most severe epilepsy.Our findings suggest fundamental processes underlying the progression of epilepsy-related brain atrophy. We deliver a novel MRI- and AI-guided epilepsy taxonomy, which could be used for individualized prognostics and targeted therapeutics.


Asunto(s)
Encéfalo , Epilepsia , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Inteligencia Artificial , Estudios Transversales , Imagen por Resonancia Magnética , Epilepsia/diagnóstico por imagen , Epilepsia/patología , Atrofia/patología
8.
Seizure ; 111: 130-137, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37633152

RESUMEN

OBJECTIVE: To explore clinical and structural differences between mesial temporal lobe epilepsy (mTLE) patients with different hippocampal sclerosis (HS) subtypes. METHODS: High-resolution T1-weighted MRI and diffusion tensor imaging data were obtained in 41 refractory mTLE patients and 52 age- and sex-matched healthy controls. Postoperative histopathological examination confirmed HS type 1 in 30 patients and HS type 2 in eleven patients. Clinical features, postoperative seizure outcomes, hippocampal subfields volumes, fractional anisotropy (FA) values of white matter regions and graph theory parameters were explored and compared between the HS type 1 and HS type 2 groups. RESULTS: No significant differences in clinical features and postsurgical seizure outcomes were found between the HS type 1 and type 2 groups. However, the HS type 1 group showed extra atrophy in ipsilateral parasubiculum than healthy controls and more severe atrophy in contralateral hippocampal fissure than the HS type 2 group. More extensive FA decrease were also observed in the HS type 1 group, involving ipsilateral optic radiation, superior fronto-occipital fasciculus, contralateral uncinate fasciculus, tapetum, bilateral hippocampal cingulum, corona radiata, etc. Furthermore, in spite of similar impairments in characteristic path length, global efficiency and local efficiency in two HS groups, the HS type 1 group showed additional decrease of clustering coefficient than healthy controls. CONCLUSIONS: HS type 1 and 2 groups had similar clinical characteristics and postoperative seizure outcomes. More widespread neuronal cell loss in the HS type 1 group contributed to more extensive structural damage and connectivity abnormality. These results shed new light on the imaging correlates of different HS pathology.

9.
Epilepsia ; 64(11): 2845-2860, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37611927

RESUMEN

We conducted a systematic review and meta-analysis to evaluate postoperative seizure and memory outcomes of temporal lobe epilepsy with different hippocampal sclerosis (HS) subtypes classified by International League Against Epilepsy (ILAE) Consensus Guidelines in 2013. Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and MOOSE (Meta-Analysis of Observational Studies in Epidemiology) guidelines, we searched PubMed, Embase, Web of Science, and Cochrane Library from January 1, 2013 to August 6, 2023. Observational studies reporting seizure and memory outcomes among different HS subtypes were included. We used the Newcastle-Ottawa scale to assess the risk of bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to grade the quality of evidence. Seizure freedom and improved outcome (Engel 1 or ILAE class 1-2) ≥1 year after surgery were defined as the primary and secondary seizure outcome. A random-effects meta-analysis by DerSimonian and Laird method was performed to obtain pooled risk ratio (RRs) with 95% confidence interval (CIs). The memory impairment was narratively reviewed because of various evaluation tools. Fifteen cohort studies with 2485 patients were eligible for the meta-analysis of seizure outcome. Six cohorts with detailed information on postoperative memory outcome were included. The pooled RRs of seizure freedom, with moderate to substantial heterogeneity, were .98 (95% CI = .84-1.15) between HS type 2 and type 1, 1.11 (95% CI = .82-1.52) between type 3 and type 1, and .80 (95% CI = .62-1.03) between the no-HS and HS groups. No significant difference of improved outcome was found between different subtypes (p > .05). The quality of evidence was deemed to be low to very low according to GRADE. The long-term seizure outcome (≥5 years after surgery) and memory impairment remained controversial.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Esclerosis del Hipocampo , Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Hipocampo/cirugía , Hipocampo/patología , Esclerosis/complicaciones , Convulsiones/cirugía , Convulsiones/complicaciones , Epilepsia/complicaciones , Trastornos de la Memoria/patología
10.
Hum Brain Mapp ; 44(6): 2323-2335, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36692056

RESUMEN

Temporal lobe epilepsy (TLE) is the most common type of intractable epilepsy in adults. Although brain myelination alterations have been observed in TLE, it remains unclear how the myelination network changes in TLE. This study developed a novel method in characterization of myelination structural covariance network (mSCN) by T1-weighted and T2-weighted magnetic resonance imaging (MRI). The mSCNs were estimated in 42 left TLE (LTLE), 42 right TLE (RTLE) patients, and 41 healthy controls (HCs). The topology of mSCN was analyzed by graph theory. Voxel-wise comparisons of myelination laterality were also examined among the three groups. Compared to HC, both patient groups showed decreased myelination in frontotemporal regions, amygdala, and thalamus; however, the LTLE showed lower myelination in left medial temporal regions than RTLE. Moreover, the LTLE exhibited decreased global efficiency compared with HC and more increased connections than RTLE. The laterality in putamen was differently altered between the two patient groups: higher laterality at posterior putamen in LTLE and higher laterality at anterior putamen in RTLE. The putamen may play a transfer station role in damage spreading induced by epileptic seizures from the hippocampus. This study provided a novel workflow by combination of T1-weighted and T2-weighted MRI to investigate in vivo the myelin-related microstructural feature in epileptic patients first time. Disconnections of mSCN implicate that TLE is a system disorder with widespread disruptions at regional and network levels.


Asunto(s)
Epilepsia del Lóbulo Temporal , Adulto , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Vaina de Mielina , Mapeo Encefálico , Lóbulo Temporal , Imagen por Resonancia Magnética/métodos , Lateralidad Funcional
13.
Brain Topogr ; 35(5-6): 692-701, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36074203

RESUMEN

OBJECTIVES: To explore the resting state networks (RSNs) alterations in patients with unilateral mesial temporal lobe epilepsy (mTLE) before and after successful surgery. METHODS: Resting-state functional MRI and T1-weighted structural MRI were obtained in 37 mTLE patients who achieved seizure freedom after anterior temporal lobectomy. Patients were scanned before surgery and at two years after surgery. Twenty-eight age- and sex-matched healthy controls were scanned once. Functional connectivity (FC) changes within and between ten common RSNs before and after surgery, and FC changes between hippocampus and RSNs were explored. RESULTS: Before surgery, decreased FC was found within visual network and basal ganglia network, while after surgery, FC within basal ganglia network further decreased but FC within sensorimotor network and dorsal attention network increased. Before surgery, between-network FC related to basal ganglia network, visual network and dorsal attention network decreased, while between-network FC related to default mode network increased. After surgery, between-network FC related to visual network and dorsal attention network significantly increased. In addition, before surgery, ipsilateral hippocampus showed decreased FC with visual network, basal ganglia network, sensorimotor network, default mode network and frontoparietal network, while contralateral rostral hippocampus showed increased FC with salience network. After surgery, no obvious FC changes were found between contralateral hippocampus and these RSNs. CONCLUSION: MTLE patients showed significant RSNs alterations before and after surgery. Basal ganglia network showed progressive decline in functional connectivity. Successful surgery may lead to RSNs reorganization. These results provide preliminary evidence for postoperative functional remodeling at whole-brain-network level.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Imagen por Resonancia Magnética/métodos , Hipocampo/diagnóstico por imagen , Hipocampo/cirugía
14.
Acta Neurol Scand ; 146(2): 144-151, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35506500

RESUMEN

OBJECTIVES: To explore dynamic alterations of cortical thickness before and after successful anterior temporal lobectomy (ATL) in patients with unilateral mesial temporal lobe epilepsy (mTLE). MATERIALS AND METHODS: High-resolution T1-weighted MRI was obtained in 28 mTLE patients who achieved seizure freedom for at least 24 months after ATL and 29 healthy controls. Patients were scanned at five timepoints, including before surgery, 3, 6, 12 and 24 months after surgery. Preoperative cortical thickness of mTLE patients were compared with healthy controls. Dynamic alterations of cortical thickness before and after surgery were compared among five scans using linear mixed models. RESULTS: Patients with mTLE showed cortical thinning pre-surgically in ipsilateral entorhinal cortex, parahippocampal gyrus, inferior parietal cortex, lateral occipital cortex; contralateral pericalcarine cortex (PCC); and bilateral caudal middle frontal gyrus (cMFG), paracentral lobule, precentral gyrus (PCG), superior parietal cortex. Cortical thickening was observed in contralateral rostral anterior cingulate cortex (rACC). Patients showed postsurgical cortical thinning in ipsilateral temporal lobe, fusiform gyrus, caudal anterior cingulate cortex, lingual gyrus, and insula. Ipsilateral cMFG, PCC, and contralateral PCG showed significant cortical thickening after surgery. In addition, contralateral rACC showed cortical thickening at 3 months follow-up, however, with obvious cortical thinning at 24 months follow-up. CONCLUSIONS: Mesial temporal lobe epilepsy patients showed widespread cortical thinning before and after anterior temporal lobectomy. Progressive cortical thinning mainly existed in neighboring regions of resection. Postoperative cortical thickening may indicate cortical remodeling after successful surgery.


Asunto(s)
Epilepsia del Lóbulo Temporal , Lobectomía Temporal Anterior , Adelgazamiento de la Corteza Cerebral , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Humanos , Imagen por Resonancia Magnética , Lóbulo Temporal/cirugía
15.
Brain Imaging Behav ; 16(1): 324-335, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34478055

RESUMEN

Unilateral temporal lobe epilepsy (TLE) is the most common type of focal epilepsy characterized by foci in the unilateral temporal lobe grey matters of regions such as the hippocampus. However, it remains unclear how the functional features of white matter are altered in TLE. In the current study, resting-state functional magnetic resonance imaging (fMRI) was performed on 71 left TLE (LTLE) patients, 79 right TLE (RTLE) patients and 47 healthy controls (HC). Clustering analysis was used to identify fourteen white matter networks (WMN). The functional connectivity (FC) was calculated among WMNs and between WMNs and grey matter. Furthermore, the FC laterality of hemispheric WMNs was assessed. First, both patient groups showed decreased FCs among WMNs. Specifically, cerebellar white matter illustrated decreased FCs with the cerebral superficial WMNs, implying a dysfunctional interaction between the cerebellum and the cerebral cortex in TLE. Second, the FCs between WMNs and the ipsilateral hippocampus (grey matter foci) were also reduced in patient groups, which may suggest insufficient functional integration in unilateral TLE. Interestingly, RTLE showed more severe abnormalities of white matter FCs, including links to the bilateral hippocampi and temporal white matter, than LTLE. Taken together, these findings provide functional evidence of white matter abnormalities, extending the understanding of the pathological mechanism of white matter impairments in unilateral TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Sustancia Blanca , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Lateralidad Funcional , Hipocampo , Humanos , Imagen por Resonancia Magnética , Lóbulo Temporal , Sustancia Blanca/diagnóstico por imagen
16.
Neuroreport ; 32(14): 1223-1228, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34406991

RESUMEN

OBJECTIVES: To assess the cognitive impairment in patients with type 2 diabetes mellitus (T2DM) using mismatch negativity (MMN) and to explore the relationship between cognitive impairment and diabetic peripheral neuropathy (DPN). METHODS: Sixty-six T2DM patients and 40 healthy controls were included. For each participant, mini-mental state examination (MMSE) was applied to assess the general cognitive function and MMN was elicited. T2DM patients were divided into two subgroups: subgroup DPN-, patients without DPN; subgroup DPN+, patients with DPN. The MMSE scores, MMN amplitudes and latencies were compared between the T2DM group and the control group using univariate analysis of variance procedures, and also among the controls, subgroup DPN- and subgroup DPN+. Pearson's correlation coefficients (r) were used to analyze potential confounding clinical factors associated with MMN. RESULTS: T2DM patients had significantly lower MMSE scores compared with controls (23.25 ± 2.86 vs. 27.15 ± 1.83; P < 0.01), whereas those of the two subgroups were not significantly different. Both subgroup DPN+ and DPN- had longer latencies and lower amplitudes of MMN than the controls. The latencies of MMN were significantly longer in subgroup DPN+ compared with subgroup DPN-. The latency of MMN was positively correlated with the duration of the disease. CONCLUSION: Cognitive decline exists in patients with T2DM irrespective of the presence of DPN. Patients with DPN may have more severe cognitive dysfunction than those without DPN. MMN may be a promising tool for evaluating cognitive function.


Asunto(s)
Disfunción Cognitiva/etiología , Diabetes Mellitus Tipo 2/complicaciones , Neuropatías Diabéticas , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad
17.
Neuroimage Clin ; 31: 102714, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34102537

RESUMEN

OBJECTIVE: To explore the structural and functional reorganization of contralateral hippocampus in patients with unilateral mesial temporal lobe epilepsy (mTLE) who achieved seizure-freedom after anterior temporal lobectomy (ATL). METHODS: We obtained high-resolution structural MRI and resting-state functional MRI data in 28 unilateral mTLE patients and 29 healthy controls. Patients were scanned before and three and 24 months after surgery while controls were scanned only once. Hippocampal gray matter volume (GMV) and functional connectivity (FC) were assessed. RESULTS: No obvious GMV changes were observed in contralateral hippocampus before and after successful surgery. Before surgery, ipsilateral hippocampus showed increased FC with ipsilateral insula (INS) and temporoparietal junction (TPJ), but decreased FC with widespread bilateral regions, as well as contralateral hippocampus. After successful ATL, contralateral hippocampus showed: (1) decreased FC with ipsilateral INS at three months follow-up, without further changes; (2) decreased FC with ipsilateral TPJ, postcentral gyrus and rolandic operculum at three months, with an obvious increase at 24 months follow-up; (3) increased FC with bilateral medial prefrontal cortex (MPFC) and superior frontal gyrus (SFG) at three months follow-up, without further changes. CONCLUSIONS: Successful ATL may not lead to an obvious structural reorganization in contralateral hippocampus. Surgical manipulation may lead to a transient FC reduction of contralateral hippocampus. Increased FC between contralateral hippocampus and bilateral MPFC and SFG may be related to postoperative functional remodeling.


Asunto(s)
Epilepsia del Lóbulo Temporal , Lobectomía Temporal Anterior , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Sustancia Gris , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
18.
Front Neurol ; 12: 663559, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34046004

RESUMEN

Objectives: Reductions in the peripapillary retinal nerve fiber layer (pRNFL) have been reported in epilepsy, namely in drug-resistant people. Hippocampal sclerosis (HS) is the most frequent cause of drug-resistant epilepsy in tertiary care centers. We aimed to evaluate the likelihood and characteristic of RNFL loss in individuals with epilepsy having HS. Methods: Fifty-five adults diagnosed with unilateral HS (mean age of 25 years; 42 female) by magnetic resonance imaging were included in this observational cross-sectional study, 58 age-matched individuals with epilepsy with no detectable structural brain abnormality were included as non-HS, and 55 people without neurological diseases were included as healthy controls. pRNFL of both eyes was measured by optical coherence tomography (OCT). In each individual disease related information was recorded. Results: Among the 55 individuals with unilateral HS, one (1.82%) and ten (18.18%) had significant or borderline abnormal thinning of the pRNFL of the ipsilateral eye to the HS. The average pRNFL ipsilateral to the side of HS was significantly thinner than people with epilepsy non-HS (p = 0.013) and healthy controls (p = 0.000), especially in the inferior quadrants. Only age was significantly correlated with the average and inferior quadrant pRNFL thickness of the ipsilateral eye to the HS (R = -0.286, p = 0.035; R = -0.353, p = 0.008 respectively). Conclusion: These preliminary findings suggest that retinal abnormalities associated with HS may have a specific pattern. Further studies need to confirm this finding and to unravel the underlying mechanism.

19.
Brain Topogr ; 34(4): 525-536, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33973138

RESUMEN

Epilepsy and depression were proposed to facilitate each other reciprocally through common neurobiological anomalies, especially the prefrontal-limbic-subcortical abnormalities. Yet neuroimaging patterns of higher-order cognitive networks and neuroanatomical correlates were rarely compared in temporal lobe epilepsy patients with (TLE-D) and without depression (TLE-N). We collected T1-weighted structural and resting-state functional MRI data from 20 TLE-D, 31 TLE-N and 20 healthy controls (HCs) and performed analyses including hippocampal volume (HCV), cortical thickness, gray matter volume (GMV) and whole-brain functional network connectivity (FNC) across three groups. Imaging differences were related to clinical and psychological measurements. TLE-D demonstrated disrupted functional role of subcortical (SUB) and higher-order cognitive networks compared to TLE-N and HCs. In TLE-D, GMV in the right supplementary motor area (SMA) and FNC between the dorsal attention (DAN) and SUB were attenuated compared to TLE-N and HCs, FNC between SUB and the visual network (VIS) decreased compared to HCs. GMV in the right SMA was negatively correlated with depression severity and some symptoms. Combined, explicit emotion regulation may be impaired in TLE-D. Meanwhile, compared to HCs, TLE-N showed smaller HCVs, TLE-D and TLE-N showed smaller GMV in the medial orbital frontal gyrus and right hippocampus and hippocampal gyrus, possibly implying predisposition of epileptic activities to co-morbid depression. Our findings suggest distinct anatomical and FNC patterns in TLE-D and TLE-N. More than prefrontal-limbic-subcortical anomalies, disrupted higher-order cognitive network may contribute to depression in TLE, providing new potential treatment targets for depression and calling attention to relation between cognitive dysfunction and co-morbid depression.


Asunto(s)
Epilepsia del Lóbulo Temporal , Depresión/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Hipocampo , Humanos , Imagen por Resonancia Magnética , Lóbulo Temporal
20.
Microb Pathog ; 155: 104899, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33894293

RESUMEN

OBJECTIVE: The aim of this study was to investigate the composition of the intestinal microbiota and its association with fecal short chain fatty acids (SCFAs) in children with drug refractory epilepsy (DRE) before and after treatment with a ketogenic diet (KD). METHODS: Herein, we conducted a cross-sectional study of 12 children with DRE and 12 matched healthy controls to compare the changes in fecal microbiomes and SCFAs. Disease cohort also underwent analysis before and after 6 months of KD treatment. RESULTS: A higher microbial alpha diversity and a significant increase in Actinobacteria at the phylum level and Enterococcus, Anaerostipes, Bifidobacterium, Bacteroides, and Blautia at the genus level were observed in the children with DRE. The abundance of the eight epileptic-associated genera was reversed after six months of KD treatment with decreases in Bifidobacterium, Akkermansia, Enterococcaceae and Actinomyces and increases in Subdoligranulum, Dialister, Alloprevotella (p < 0.05). In particular, we identified some taxa that were more prevalent in patients with an inadequate response to KD than in those with an adequate response. Further, a significant correlation was observed between the change in the microbiome genera after KD treatment. The SCFA content in the fecal after 6 months of KD treatment increased and was highly correlated with the gut bacteria. SIGNIFICANCES: Dysbiosis of the microbiome could be involved in the pathogenesis of DRE in children, which can be relieved by a KD to a large extent. Gut microbiota and microbial metabolism could contribute to the antiseizure effect of KD.


Asunto(s)
Dieta Cetogénica , Epilepsia , Microbioma Gastrointestinal , Niño , Estudios Transversales , Disbiosis , Heces , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...