Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Blood Sci ; 6(3): e00193, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38832105

RESUMEN

Despite recent progress in multiple myeloma (MM) treatments, most patients will relapse and require additional treatment. Intravenous daratumumab, a human IgGκ monoclonal antibody targeting CD38, has shown good efficacy in the treatment of MM. A subcutaneous version of daratumumab was formulated to reduce the burden of intravenous infusions. We aimed to investigate the efficacy and safety of subcutaneous daratumumab in Chinese patients with relapsed/refractory MM based on the demonstrated noninferiority of subcutaneous daratumumab to intravenous daratumumab, with a shorter administration time and reduced infusion-related reaction rate in global studies. This phase 1, multicenter study (MMY1010; ClinicalTrials.gov Identifier: NCT04121260) evaluated subcutaneous daratumumab in Chinese patients with relapsed/refractory MM after 1 prior line (n = 1) or ≥2 prior lines (n = 20) of therapy, including a proteasome inhibitor and an immunomodulatory drug. Primary endpoints were pharmacokinetics and safety. Mean (standard deviation) maximum trough concentration of daratumumab was 826 (335) µg/mL, which was consistent with prior studies of subcutaneous daratumumab and intravenous daratumumab. Safety was consistent with safety profiles observed in other daratumumab studies, with no new safety concerns identified. Incidences of infusion-related reactions and injection-site reactions were low and consistent with other subcutaneous daratumumab studies. At a median follow-up of 7.5 months, the overall response rate was 57.1%, with a very good partial response or better rate of 38.1% and complete response or better rate of 19.0%. Our results demonstrate a favorable benefit/risk profile of subcutaneous daratumumab in Chinese patients with relapsed/refractory MM, potentially impacting clinical administration of daratumumab in this population.

2.
Haematologica ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813706

RESUMEN

Multiple myeloma (MM) remains an incurable hematological malignancy. Despite tremendous advances in the treatment, about 10% of patients still have very poor outcomes with median overall survival less than 24 months. Our study aimed to underscore the critical mechanisms pertaining to the rapid disease progression and provide novel therapeutic selection for these ultra-high-risk patients. We utilized single-cell transcriptomic sequencing to dissect the characteristic bone marrow niche of patients with survival of less than two years (EM24). Notably, an enrichment of LILRB4high pre-matured plasma-cell cluster was observed in the patients in EM24 compared to patients with durable remission. This cluster exhibited aggressive proliferation and drug-resistance phenotype. High-level LILRB4 promoted MM clonogenicity and progression. Clinically, high expression of LILRB4 was correlated with poor prognosis in both newly diagnosed MM patients and relapsed/refractory MM patients. The ATAC-seq analysis identified that high chromosomal accessibility caused the elevation of LILRB4 on MM cells. CRISPR-Cas9 deletion of LILRB4 alleviated the growth of MM cells, inhibited the immunosuppressive function of MDSCs, and further rescued T cell dysfunction in MM microenvironment. The more infiltration of myeloid-derived suppressive cells (MDSCs) was observed in EM24 patients as well. Therefore, we innovatively generated a TCR-based chimeric antigen receptor (CAR) T cell, LILRB4-STAR-T. Cytotoxicity experiment demonstrated that LILRB4-STAR-T cells efficaciously eliminated tumor cells and impeded MDSCs function. In conclusion, our study elucidates that LILRB4 is an ideal biomarker and promising immunotherapy target for high-risk MM. LILRB4-STAR-T cell immunotherapy is promising against tumor cells and immunosuppressive tumor microenvironment in MM.

3.
Leukemia ; 38(6): 1299-1306, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38609496

RESUMEN

Growing evidence suggests that gain or amplification [gain/amp(1q)] accumulates during disease progression of multiple myeloma (MM). Previous investigations have indicated that small gain/amp(1q) subclones present at the time of diagnosis may evolve into dominant clones upon MM relapse. However, the influence of a minor clone of gain/amp(1q) on MM survival, as well as the correlation between different clonal sizes of gain/amp(1q) and the chromosomal instability (CIN) of MM, remains poorly understood. In this study, we analyzed fluorescence in situ hybridization (FISH) results of 998 newly diagnosed MM (NDMM) patients. 513 patients were detected with gain/amp(1q) at diagnosis. Among these 513 patients, 55 had a minor clone (≤20%) of gain/amp(1q). Patients with a minor clone of gain/amp(1q) displayed similar survival outcomes compared to those without gain/amp(1q). Further analysis demonstrated patients with a minor clone of gain/amp(1q) exhibited a clonal architecture similar to those without gain/amp(1q). Lastly, our results showed a significant increase in the clonal size of the minor clone of gain/amp(1q), frequently observed in MM. These findings suggested that a minor clone of gain/amp(1q) might represent an earlier stage in the pathogenesis of gain/amp(1q) and propose a "two-step" process in the clonal size changes of gain/amp(1q) in MM.


Asunto(s)
Hibridación Fluorescente in Situ , Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Mieloma Múltiple/mortalidad , Hibridación Fluorescente in Situ/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Pronóstico , Cromosomas Humanos Par 1/genética , Adulto , Evolución Clonal/genética , Anciano de 80 o más Años , Inestabilidad Cromosómica , Aberraciones Cromosómicas , Progresión de la Enfermedad
4.
J Immunother Cancer ; 12(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38443094

RESUMEN

BACKGROUND: Over 50% of patients with relapsed or refractory large B-cell lymphoma (r/r LBCL) receiving CD19-targeted chimeric antigen receptor (CAR19) T-cell therapy fail to achieve durable remission. Early identification of relapse or progression remains a significant challenge. In this study, we prospectively investigate the prognostic value of dynamic circulating tumor DNA (ctDNA) and track genetic evolution non-invasively, for the first time in an Asian population of r/r patients undergoing CAR19 T-cell therapy. METHODS: Longitudinal plasma samples were prospectively collected both before lymphodepletion and at multiple timepoints after CAR19 T-cell infusion. ctDNA was detected using a capture-based next-generation sequencing which has been validated in untreated LBCL. RESULTS: The study enrolled 23 patients with r/r LBCL and collected a total of 101 ctDNA samples. Higher pretreatment ctDNA levels were associated with inferior progression-free survival (PFS) (p=0.031) and overall survival (OS) (p=0.023). Patients with undetectable ctDNA negative (ctDNA-) at day 14 (D14) achieved an impressive 3-month complete response rate of 77.8% vs 22.2% (p=0.015) in patients with detectable ctDNA positive (ctDNA+), similar results observed for D28. CtDNA- at D28 predicted significantly longer 1-year PFS (90.9% vs 27.3%; p=0.004) and OS (90.9% vs 49.1%; p=0.003) compared with patients who remained ctDNA+. Notably, it is the first time to report that shorter ctDNA fragments (<170 base pairs) were significantly associated with poorer PFS (p=0.031 for D14; p=0.002 for D28) and OS (p=0.013 for D14; p=0.008 for D28) in patients with LBCL receiving CAR T-cell therapy. Multiple mutated genes exhibited an elevated prevalence among patients with progressive disease, including TP53, IGLL5, PIM1, BTG1, CD79B, GNA13, and P2RY8. Notably, we observed a significant correlation between IGLL5 mutation and inferior PFS (p=0.008) and OS (p=0.014). CONCLUSIONS: Our study highlights that dynamic ctDNA monitoring during CAR T-cell therapy can be a promising non-invasive method for early predicting treatment response and survival outcomes. Additionally, the ctDNA mutational profile provides novel insights into the mechanisms of tumor-intrinsic resistance to CAR19 T-cell therapy.


Asunto(s)
ADN Tumoral Circulante , Linfoma de Células B Grandes Difuso , Humanos , ADN Tumoral Circulante/genética , Inmunoterapia Adoptiva , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/terapia , Genómica , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/terapia
5.
Invest Ophthalmol Vis Sci ; 65(2): 9, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38315492

RESUMEN

Purpose: This observational study aimed to identify mutations in monogenic syndromic high myopia (msHM) using data from reported samples (n = 9370) of the Myopia Associated Genetics and Intervention Consortium (MAGIC) project. Methods: The targeted panel containing 298 msHM-related genes was constructed and screening of clinically actionable variants was performed based on whole exome sequencing. Capillary sequencing was used to verify the identified gene mutations in the probands and perform segregation analysis with their relatives. Results: A total of 381 candidate variants in 84 genes and 85 eye diseases were found to contribute to msHM in 3.6% (335/9370) of patients with HM. Among them, the 22 genes with the most variations accounted for 62.7% of the diagnostic cases. In the genotype-phenotype association analysis, 60% (201/335) of suspected msHM cases were recalled and 25 patients (12.4%) received a definitive genetic diagnosis. Pathogenic variants were distributed in 18 msHM-related diseases, mainly involving retinal dystrophy genes (e.g. TRPM1, CACNA1F, and FZD4), connective tissue disease genes (e.g. FBN1 and COL2A1), corneal or lens development genes (HSF4, GJA8, and MIP), and other genes (TEK). The msHM gene mutation types were allocated to four categories: nonsense mutations (36%), missense mutations (36%), frameshift mutations (20%), and splice site mutations (8%). Conclusions: This study highlights the importance of thorough molecular subtyping of msHM to provide appropriate genetic counselling and multispecialty care for children and adolescents with HM.


Asunto(s)
Miopía , Distrofias Retinianas , Canales Catiónicos TRPM , Niño , Adolescente , Humanos , Secuenciación del Exoma , Mutación , Miopía/diagnóstico , Miopía/genética , Mutación del Sistema de Lectura , Distrofias Retinianas/genética , Linaje , Receptores Frizzled/genética , Canales Catiónicos TRPM/genética
6.
Cancer Med ; 13(2): e6965, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38348996

RESUMEN

BACKGROUND: High-dose chemotherapy followed by autologous stem cell transplantation (ASCT) remains an effective treatment for non-Hodgkin lymphoma (NHL). The limited availability of carmustine has prompted the exploration of novel alternative conditioning regimens. This study aimed to compare the efficacy and safety profile of GBM/GBC (gemcitabine, busulfan, and melphalan or cyclophosphamide) conditioning compared with the standard BEAM/BEAC regimens (carmustine, etoposide, cytarabine, and melphalan or cyclophosphamide) for ASCT in patients with NHL. METHODS: A retrospective analysis was conducted on 231 NHL patients, who underwent ASCT from October 2010 to October 2021 at the Institute of Hematology & Blood Disease Hospital, including both first-line and salvage settings. This resulted in the inclusion of 112 patients in the GBM/GBC arm and 92 in the BEAM/BEAC arm. Propensity score matching was employed to validate the results. RESULTS: Disease subtype distribution was similar between the GBM/GBC and BEAM/BEAC groups, with diffuse large B-cell lymphoma being the most common (58.9% vs. 58.7%), followed by PTCL (17.0% vs. 18.5%) and MCL (14.3% vs. 14.1%). At 3 months post-ASCT, complete response (CR) rates were comparable (GBM/GBC 93.5% vs. BEAM/BEAC 91.1%; p = 0.607). The 4-year progression-free survival (78.4% vs. 82.3%; p = 0.455) and 4-year overall survival (88.1% vs. 87.7%; p = 0.575) were also similar. Both groups exhibited low non-relapse mortality at 4 years (GBM/GBC 1.8% vs. BEAM/BEAC 3.5%; p = 0.790) with no transplant-related mortalities reported. The GBM/GBC cohort demonstrated a higher incidence of grade 3/4 oral mucositis and hepatic toxicity, whereas the BEAM/BEAC group had more frequent cases of bacteremia or sepsis (13 cases vs. 5 in GBM/GBC). CONCLUSIONS: The GBM/GBC regimen is effective and well-tolerated, offering outcomes that are highly comparable to those in NHL patients conditioned with BEAM/BEAC, as demonstrated in a prognostically matched cohort.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfoma no Hodgkin , Humanos , Carmustina/efectos adversos , Gemcitabina , Trasplante de Células Madre Hematopoyéticas/métodos , Melfalán/efectos adversos , Estudios Retrospectivos , Trasplante Autólogo/métodos , Linfoma no Hodgkin/tratamiento farmacológico , Ciclofosfamida/uso terapéutico , Etopósido/efectos adversos , Citarabina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Acondicionamiento Pretrasplante/métodos
8.
Clin Cancer Res ; 30(6): 1131-1142, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38170583

RESUMEN

PURPOSE: We investigated both the clinical utilities and the prognostic impacts of the clonotypic peptide mass spectrometry (MS)-EasyM, a blood-based minimal residual disease (MRD) monitoring protocol in multiple myeloma. EXPERIMENTAL DESIGN: A total of 447 sequential serum samples from 56 patients with multiple myeloma were analyzed using EasyM. Patient-specific M-protein peptides were sequenced from diagnostic samples; sequential samples were quantified by EasyM to monitor the M-protein. The performance of EasyM was compared with serum immunofixation electrophoresis (IFE), bone marrow multiparameter flow cytometry (MFC), and next-generation flow cytometry (NGF) detection. The optimal balance of EasyM sensitivity/specificity versus NGF (10-5 sensitivity) was determined and the prognostic impact of MS-MRD status was investigated. RESULTS: Of the 447 serum samples detected and measured by EasyM, 397, 126, and 92 had time-matching results for comparison with serum IFE, MFC-MRD, and NGF-MRD, respectively. Using a dotp >0.9 as the MS-MRD positive, sensitivity was 99.6% versus IFE and 100.0% versus MFC and NGF. Using an MS negative cutoff informed by ROC analysis (<1.86% of that at diagnosis), EasyM sensitivity remained high versus IFE (88.3%), MFC (85.1%), and NGF (93.2%), whereas specificity increased to 90.4%, 55.8%, and 93.2%, respectively. In the multivariate analysis, older diagnostic age was an independent predictor for progression-free survival [PFS; high risk (HR), 3.15; 1.26-7.86], the best MS-MRD status (MS-MRD negative) was independent predictor for both PFS (HR, 0.25; 0.12-0.52) and overall survival (HR, 0.16; 0.06-0.40). CONCLUSIONS: EasyM is a highly sensitive and minimal invasive method of MRD monitoring in multiple myeloma; MS-MRD had significant predictive ability for survival outcomes.


Asunto(s)
Mieloma Múltiple , Humanos , Neoplasia Residual/diagnóstico , Pronóstico , Sensibilidad y Especificidad , Citometría de Flujo/métodos
9.
Blood Sci ; 6(1): e00179, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38239572

RESUMEN

Waldenstrom macroglobulinemia (WM) is a type of incurable, indolent B-cell lymphoma that is prone to relapse. Over time, treatment strategies have progressed from cytotoxic drugs to rituximab (R)- or bortezomib (V)-based regimens, and have now entered into an era of Bruton tyrosine kinase inhibitor (BTKi)-based regimens. However, the optimal treatment for the relapsed patients is still unclear. Herein, we analyzed the outcomes of the first- and second-line therapies in 377 patients with WM to illustrate the optimal choices for second-line therapy. After a median follow-up of 45.4 months, 89 patients received second-line therapy, and 53 patients were evaluated for response. The major response rates (MRR) of first- and second-line treatment were 65.1% and 67.9% (P = 0.678). The median progression-free survival (PFS) for the second-line therapy (PFS2) was shorter than that for the first-line therapy (PFS1) (56.3 vs 40.7 months, P = 0.03). However, PFS2 in targeted drugs group (R-/V-/BTKi-based regimens) was comparable to PFS1 (60.7 months vs 44.7 months, respectively, P = 0.21). Regarding second-line therapy, patients who underwent sequential treatment escalation-such as transitioning from cytotoxic drugs to R-/V-/BTKi-based regimens or from R-/V-based to BTKi-based regimens (escalation group) -had higher MRR (80.6% vs 47.1%, respectively, P = 0.023) and longer PFS2 (50.4 vs 23.5 months, respectively, P < 0.001) compared to the non-escalation group. Patients in the escalation group also had longer post-relapse overall survival compared with the non-escalation group (median, 50.4 vs 23.5 months, respectively, P = 0.039). Our findings indicate that sequential treatment escalation may improve the survival of patients with WM.

10.
EBioMedicine ; 100: 104961, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199044

RESUMEN

BACKGROUND: Multiple myeloma (MM) is an incurable hematological malignancy of the plasma cells. The maintenance of protein homeostasis is critical for MM cell survival. Elevated levels of paraproteins in MM cells are cleared by proteasomes or lysosomes, which are independent but inter-connected with each other. Proteasome inhibitors (PIs) work as a backbone agent and successfully improved the outcome of patients; however, the increasing activity of autophagy suppresses the sensitivity to PIs treatment. METHODS: The transcription levels of CRIP1 were explored in plasma cells obtained from healthy donors, patients with newly diagnosed multiple myeloma (NDMM), and relapsed/refractory multiple myeloma (RRMM) using Gene expression omnibus datasets. Doxycycline-inducible CRIP1-shRNA and CRIP1 overexpressed MM cell lines were constructed to explore the role of CRIP1 in MM pathogenesis. Proliferation, invasion, migration, proteasome activity and autophagy were examined in MM cells with different CRIP1 levels. Co-immunoprecipitation (Co-IP) with Tandem affinity purification/Mass spectrum (TAP/MS) was performed to identify the binding proteins of CRIP1. The mouse xenograft model was used to determine the role of CRIP1 in the proliferation and drug-resistance of MM cells. FINDINGS: High CRIP1 expression was associated with unfavorable clinical outcomes in patients with MM and served as a biomarker for RRMM with shorter overall survival. In vitro and in vivo studies showed that CRIP1 plays a critical role in protein homeostasis via the dual regulation of the activities of proteasome and autophagy in MM cells. A combined analysis of RNA-seq, Co-IP and TAP/MS demonstrated that CRIP1 promotes proteasome inhibitors resistance in MM cells by simultaneously binding to de-ubiquitinase USP7 and proteasome coactivator PA200. CRIP1 promoted proteasome activity and autophagosome maturation by facilitating the dequbiquitination and stabilization of PA200. INTERPRETATION: Our findings clarified the pivotal roles of the CRIP1/USP7/PA200 complex in ubiquitin-dependent proteasome degradation and autophagy maturation involved in the pathogenesis of MM. FUNDING: A full list of funding sources can be found in the acknowledgements section.


Asunto(s)
Mieloma Múltiple , Complejo de la Endopetidasa Proteasomal , Humanos , Animales , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Inhibidores de Proteasoma/farmacología , Peptidasa Específica de Ubiquitina 7/metabolismo , Línea Celular Tumoral , Lisosomas/metabolismo , Autofagia/genética , Proteínas Portadoras/metabolismo , Proteínas con Dominio LIM
11.
Talanta ; 271: 125717, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38281430

RESUMEN

The significant role of cell-free DNA (cfDNA) for disease diagnosis, including cancer, has garnered a lot of attention. The challenges of creating target-specific primers and the possibility of false-positive signals make amplification-based detection methods problematic. Fluorescent biosensors based on CRISPR-Cas have been widely established, however they still require an amplification step before they can be used for detection. To detect cfDNA, researchers have created a CRISPR-Cas12a-based nucleic acid amplification-free fluorescent biosensor that uses a combination of fluorescence and colorimetric signaling improved by duplex-specific nuclease (DSN). DSN-assisted signal recycling is initiated in H1@MBs when the target cfDNA activates the CRISPR-Cas12a complex, leading to the degradation of single-strand DNA (ssDNA) sequences. This method has an extremely high detection limit for the BRCA-1 breast cancer gene. In addition to measuring viral DNA in a field-deployable and point-of-care testing (POCT) platform, this fast and highly selective sensor can be used to evaluate additional nucleic acid biomarkers.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos Libres de Células , Ácidos Nucleicos , Sistemas CRISPR-Cas , Colorimetría , Colorantes , ADN de Cadena Simple , Endonucleasas
12.
Am J Hematol ; 99(4): 523-533, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38247315

RESUMEN

Current standard predictive models of disease risk do not adequately account for the heterogeneity of survival outcomes in patients with new-diagnosed multiple myeloma (NDMM). In this retrospective, multicohort study, we collected clinical and genetic data from 1792 NDMM patients and identified the prognostic impact of all features. Using the top-ranked predictive features, a weighted Myeloma Prognostic Score System (MPSS) risk model was formulated and validated to predict overall survival (OS). In the training cohort, elevated lactate dehydrogenase level (LDH), International Staging System (ISS) Stage III, thrombocytopenia, and cumulative high-risk cytogenetic aberration (HRA) numbers were found to have independent prognostic significance. Each risk factor was defined as its weighted value respectively according to their hazard ratio for OS (thrombocytopenia 2, elevated LDH 1, ISS III 2, one HRA 1, and ≥2 HRA 2, points). Patients were further stratified into four risk groups: MPSS I (22.5%, 0 points), II (17.6%, 1 points), III (38.6%, 2-3 points), and IV (21.3%, 4-7 points). MPSS risk stratification showed optimal discrimination, as well as calibration, of four risk groups with median OS of 91.0, 69.8, 45.0, and 28.0 months, for patients in MPSS I to IV groups (p < .001), respectively. Importantly, the MPSS model retained its prognostic value in the internal validation cohort and an independent external validation cohort, and exhibited significant risk distribution compared with conventional prognostic models (R-ISS, R2-ISS, and MASS). Utilization of the MPSS model in clinical practice could improve risk estimation in NDMM patients, thus prompting individualized treatment strategies.


Asunto(s)
Mieloma Múltiple , Humanos , Pronóstico , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Estadificación de Neoplasias , Estudios Retrospectivos , Modelos de Riesgos Proporcionales
14.
Ther Adv Med Oncol ; 16: 17588359231221340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38249329

RESUMEN

Background: Deeper depth of response (DpR) after induction therapy, especially gain of negative minimal residual disease (MRD), has been linked to prolonged survival in multiple myeloma (MM). However, flow-MRD examination focuses on the numbers but not on the biological characteristics of residual plasma cells (PCs). Objectives: To explore whether the genetic features of residual tumor cells affect the survival time of patients with MM. Design: A retrospective cohort study. Methods: We investigated the clonality of cytogenetic abnormalities (CAs) of the residual PCs using interphase fluorescence in situ hybridization (iFISH) in the National Longitudinal Cohort of Hematological Diseases in China (NCT04645199). Here, a longitudinal cohort of 269 patients with patient-paired diagnostic and post-induction iFISH results was analyzed. Results: Persistent CAs after induction therapy were detected in about half of the patients (118/269, 43%), and patients with undetectable CAs showed significantly improved survival compared with those with genetically detectable MRD [median progression-free survival (mPFS): 59.7 versus 35.7 months, p < 0.001; median overall survival (mOS): 97.1 versus 68.8 months, p = 0.011]. In addition, different patterns of therapy-induced clonal evolution were observed by comparing the clonal structure of residual PCs with paired baseline samples. Patients who maintained at a high risk during follow-up had the worst survival (mPFS: 30.5 months; mOS: 54.4 months), while those who returned to lower risk or had iFISH- at both time points had the best survival (mPFS: 62.0 months, mOS: not reached). Conclusion: These findings highlighted the prognostic value of genetic testing in residual tumor cells, which may provide a deep understanding of clonal evolution and guide clinical therapeutic strategies.


Study using fluorescence in situ hybridization (iFISH) to investigate the clonality of cytogenetic abnormalities of the residual plasma cells in multiple myeloma Gain of negative minimal residual disease (MRD) has been linked to prolonged survival in cancer treatment. However, in multiple myeloma (MM), detection of MRD-negativity (MRD-) using multiparameter flow cytometry (MFC) only reflects the quantitative characteristics of residual plasma cells (PCs), while the biological and genetic features of MRD are neglected. To address this gap, our study has employed interphase fluorescence in situ hybridization (iFISH) to evaluate the clonality of cytogenetic abnormalities (CAs) of the bone marrow residual PCs after induction therapy, in combined with MRD detection by MFC to predict the prognosis of MM patients. A total of 396 patients from the database of National Longitudinal Cohort of Hematological Diseases in China (ClinicalTrials.gov identifiers: NCT04645199) were enrolled. Persistent CAs after induction therapy were detected in about half of the patients (118/269, 43%), and patients with undetectable CAs showed significantly improved survival compared with those without genetically detectable MRD. In addition, different patterns of therapy-induced clonal evolution were observed by comparing the clonal structure of residual PCs with paired baseline samples. And therapy-induced clonal evolution exerted a significant impact on patient outcomes. These findings highlighted the importance of genetic testing of residual tumor cells after induction therapy, which may represent a reliable complementary technique for flow-MRD detection and provide a further understanding of clonal evolution.

15.
Ann Hematol ; 103(4): 1305-1315, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38049586

RESUMEN

Prognostic significance of multiple immune antigens in multiple myeloma has been well established. However, a level of uncertainty remains regarding the intrinsic relationship between immunophenotypes and cytogenetic stability and precise risk stratification. To address these unresolved issues, we conducted a study involving 1389 patients enrolled in the National Longitudinal Cohort of Hematological Diseases in China (NCT04645199). Our results revealed that the correlation between antigen expression and cytogenetics is more prominent than cytopenia or organ dysfunction. Most immune antigens, apart from CD38, CD138, and CD81, exhibit significant associations with the incidence of at least one cytogenetic abnormality. In turn, we identified CD138-low/CD27-neg as specific adverse immunophenotypic profile, which remaining independent impact on progression-free survival (HR, 1.49; P = 0.007) and overall survival (HR, 1.77; P < 0.001) even in the context of cytogenetics. Importantly, CD138-low/CD27-neg profile was also associated with inferior survival after first relapse (P < 0.001). Moreover, the antigen expression profiles were not strictly similar when comparing diagnosis and relapse; in particular, the CD138-low/CD27-neg pattern was notably increased after disease progression (19.1 to 29.1%; P = 0.005). Overall, our study demonstrates that diverse immune profiles are strongly associated with cytogenetic stability, and a specific immunophenotype (CD138-low/CD27-neg) could effectively predict prognoses across different disease stages.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética , Pronóstico , Aberraciones Cromosómicas , Análisis Citogenético , Recurrencia
16.
Cancer ; 130(3): 421-432, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37846845

RESUMEN

BACKGROUND: The duration of response to treatment is a major prognostic factor, and early relapse (ER) strongly predicts inferior survival in multiple myeloma (MM). However, the definitions of ER in MM vary from study to study and how to dynamically integrate risk distribution is still unsolved. METHODS: This study evaluated these ER definitions and further investigated the underlying relationship with static risk distribution in 629 newly diagnosed MM (NDMM) patients from the National Longitudinal Cohort of Hematological Diseases in China (NCT04645199). RESULTS: These data indicated that early relapse within 18 months (ER18) after initial treatment was the best time point for identifying early progression and dynamic high-risk in MM. The ER18 population (114 of 587, 19.4%) presented with more aggressive biologic features and the inferior response to treatment compared to a reference cohort (p < .001), with a significantly short median overall survival (OS) of 28.9 months. Multivariate analyses confirmed the most significant prognostic value of ER18 on OS in the context of International Staging System stage, elevated lactate dehydrogenase, thrombocytopenia, cytogenetic abnormalities, and treatment (hazard ratio, 4.467; p < .001). The authors also described the specific transitions from static risk profile to dynamic risk distribution and then constructed a mixed-risk-pattern to identify four novel populations with distinct survival (p < .001). Additionally, the authors proposed a second-state model that predicts dynamic risk changes, enabling a complementary role to the Revised International Staging System model in facilitating individualized systematic treatment. CONCLUSIONS: Collectively, this study concludes that ER18 is a simple and dynamic prognostic predictor in MM. In addition to static risk assessment, dynamic risk plays an important role in survival prediction.


Asunto(s)
Mieloma Múltiple , Humanos , Recurrencia Local de Neoplasia , Pronóstico , Modelos de Riesgos Proporcionales , Medición de Riesgo , Estudios Retrospectivos
17.
Haematologica ; 109(2): 591-603, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37534514

RESUMEN

The deletion of chromosome 17p (del(17p)) is considered a crucial prognostic factor at the time of diagnosis in patients with multiple myeloma (MM). However, the impact of del(17p) on survival at different clonal sizes at relapse, as well as the patterns of clonal evolution between diagnosis and relapse and their prognostic value, has not been well described. To address these issues, we analyzed the interphase fluorescence in situ hybridization (iFISH) results of 995 newly diagnosed MM (NDMM) patients and 293 patients with MM at their first relapse. Among these patients, 197 had paired iFISH data at diagnosis and first relapse. Our analysis of paired iFISH revealed that a minor clone of del(17p) at relapse but not at diagnosis was associated with poor prognosis in MM (hazard ratio for median overall survival 1.64 vs. 1.44). Fifty-six and 12 patients developed one or more new cytogenetic abnormalities at relapse, mainly del(17p) and gain/amp(1q), respectively. We classified the patients into six groups based on the change patterns in the clonal size of del(17p) between the two time points. Patients who did not have del(17p) during follow-up showed the best outcomes, whereas those who acquired del(17p) during their disease course, experienced compromised survival (median overall survival: 61.3 vs. 49.4 months; hazard ratio =1.64; 95% confidence interval: 1.06-2.56; P<0.05). In conclusion, our data confirmed the adverse impact of a minor clone of del(17p) at relapse and highlighted the importance of designing optimal therapeutic strategies to eliminate high-risk cytogenetic abnormalities (clinicaltrials gov. identifier: NCT04645199).


Asunto(s)
Mieloma Múltiple , Humanos , Aberraciones Cromosómicas , Hibridación Fluorescente in Situ , Mieloma Múltiple/terapia , Mieloma Múltiple/tratamiento farmacológico , Recurrencia Local de Neoplasia , Pronóstico
19.
Cell Metab ; 36(1): 159-175.e8, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38113887

RESUMEN

The gut microbiome has been found to play a crucial role in the treatment of multiple myeloma (MM), which is still considered incurable due to drug resistance. In previous studies, we demonstrated that intestinal nitrogen-recycling bacteria are enriched in patients with MM. However, their role in MM relapse remains unclear. This study highlights the specific enrichment of Citrobacter freundii (C. freundii) in patients with relapsed MM. Through fecal microbial transplantation experiments, we demonstrate that C. freundii plays a critical role in inducing drug resistance in MM by increasing levels of circulating ammonium. The ammonium enters MM cells through the transmembrane channel protein SLC12A2, promoting chromosomal instability and drug resistance by stabilizing the NEK2 protein. We show that furosemide sodium, a loop diuretic, downregulates SLC12A2, thereby inhibiting ammonium uptake by MM cells and improving progression-free survival and curative effect scores. These findings provide new therapeutic targets and strategies for the intervention of MM progression and drug resistance.


Asunto(s)
Microbioma Gastrointestinal , Mieloma Múltiple , Humanos , Bortezomib/farmacología , Bortezomib/uso terapéutico , Bortezomib/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Línea Celular Tumoral , Proteínas de la Membrana/metabolismo , Quinasas Relacionadas con NIMA/metabolismo , Quinasas Relacionadas con NIMA/uso terapéutico , Miembro 2 de la Familia de Transportadores de Soluto 12/farmacología
20.
JAMA Netw Open ; 6(12): e2345821, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039006

RESUMEN

Importance: High myopia (HM) is one of the leading causes of visual impairment worldwide. Genetic factors are known to play an important role in the development of HM. Objective: To identify risk variants in a large HM cohort and to examine the implications of genetic testing of schoolchildren with HM. Design, Setting, and Participants: This cohort study retrospectively reviewed whole-exome sequencing (WES) results in 6215 schoolchildren with HM who underwent genetic testing between September 2019 and July 2020 in Wenzhou City, China. HM is defined as a spherical equivalent refraction (SER) of -6.00 diopters (D) or less. The study setting was a genetic testing laboratory and a multicenter school census. Data were analyzed from July 2021 to June 2022. Main Outcomes and Measures: The frequency and distribution of positive germline variants, the percentage of individuals with HM in both eyes, and subsequent variant yield for common high myopia (CHM; -8.00 D ≤ SER ≤ -6.00 D), ultra myopia (UM; -10.00 D ≤ SER < -8.00 D), and extreme myopia (EM; SER < -10.00 D). Results: Of the 6215 schoolchildren with HM, 3278 (52.74%) were male. Their mean (SD) age was 14.87 (2.02) years, including 355 students in primary school, 1970 in junior high school, and 3890 in senior high school. The mean (SD) SER was -7.51 (-1.36) D for the right eye and -7.46 (-1.34) D for the left eye. Among schoolchildren with HM, genetic testing yielded 271 potential pathogenic variants in 75 HM candidate genes in 964 diagnoses (15.52%). A total of 36 known variants were found in 490 HM participants (7.88%) and 235 protein-truncating variants (PTVs) in 506 participants (8.14%). Involved variant yield was significantly positively associated with SER (Cochran-Armitage test for trend Z = 2.5492; P = .01), which ranged from 7.66% in the CHM group, 8.70% in the UM group, to 11.90% in the EM group. We also found that primary school students with EM had the highest variant yield of PTVs (8 of 35 students [22.86%]), which was 1.77 and 4.78 times that of the UM and CHM, respectively. Conclusions and Relevance: In this cohort study of WES for HM, several potential pathogenic variants were identified in a substantial number of schoolchildren with HM. The high variation frequency in younger students with EM can provide clues for genetic screening and clinical examinations of HM to promote long-term follow-up assessment.


Asunto(s)
Miopía , Humanos , Masculino , Niño , Adolescente , Femenino , Estudios de Cohortes , Estudios Retrospectivos , Secuenciación del Exoma , Miopía/genética , Refracción Ocular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA