Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 380: 129089, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37116623

RESUMEN

Accelerants can improve the anaerobic performance of a microbial electrolysis cell coupled anaerobic digestion (MEC-AD). MAX phase titanium aluminum carbide (MAX), multilayer Ti3C2TX MXene (ML-MXene) and few-layer Ti3C2TX MXene (FL-MXene) were utilized as accelerants for MEC-AD to promote CH4 production and CO2 reduction at a voltage of 0.6 V. The highest CH4 yield (358.7 mL/g VS) and the lowest CO2 yield (57.4 mL/g VS) relative to the control group (170.6 and 125.1 mL/g VS) were obtained in MEC-AD with ML-MXene (0.035 wt%). The digestates of MEC-AD with 0.035 wt% ML-MXene have superior thermal stability (40.9%) and total nutrient content (42.1 g/kg). The ML-MXene enhanced the abundances of Methanosarcina and Methanobacterium. This work highlights the possible role of MXene in promoting methanogenesis. These important findings provide a novel avenue for the development of MXene accelerants for MEC-AD systems.


Asunto(s)
Dióxido de Carbono , Metano , Anaerobiosis , Reactores Biológicos/microbiología , Electrólisis
2.
Waste Manag ; 159: 163-173, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36764241

RESUMEN

Carbon materials have been widely used in anaerobic digestion (AD), but the role of zero-dimensional carbon quantum dots (CQDs) in anaerobic co-digestion (AcoD) has not yet been reported. In this work, the effect of aloe peel-derived CQDs (AP-CQDs) on the AcoD system of aloe peel and dairy manure was investigated. The addition of AP-CQDs accelerants increased the cumulative CH4 yield from 201.14 to 266.92-339.64 mL/g VS and increased total chemical oxygen demand removal efficiency from 34.72 % to 48.77-57.87 %. The use of a digestate with 0.36 wt.% of AP-CQDs resulted in a thermogravimetric mass loss of 47.15 % and a promising total nutrient content of 46.65 g/kg. The excellent electron exchange capacity of AP-CQDs may facilitate direct interspecies electron transfer during the AD process. Moreover, the use of AP-CQDs can enrich methanogenic microorganisms (Methanosarcina and Methanobacterium). These findings provide a viable strategy for improving methane production and create awareness regarding the dual use of biomass waste.


Asunto(s)
Aloe , Puntos Cuánticos , Anaerobiosis , Biocombustibles , Carbono , Reactores Biológicos , Metano , Estiércol , Digestión
3.
Bioresour Technol ; 368: 128311, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36370940

RESUMEN

Black phosphorus (BP) and BP modified by hydrogen peroxide (MBP) were used as accelerants to enhance CH4 production and CO2 reduction in microbial electrolysis cells (MECs) coupled with anaerobic co-digestion systems (MEC-AcoD). The MEC-AcoD group with a voltage of 0.6 V and 0.03 wt.% of MBP accelerant (MEC0.6MBP0.03) had the largest CH4 yield (242.1 mL/g VS) and the smallest carbon dioxide yield (97.6 mL/g VS) compared with the control group (141.2 mL/g VS, 146.9 mL/g VS). The digestates that used MEC0.6MBP0.03 exhibited superior thermal stability (46.2 %) and total nutrient contents (44.5 g/kg). These improvements may be attributed to the superior electron exchange capacity and physicochemical properties of MBP. Herein, we propose a strategy to understand enhanced CH4 production and CO2 reduction in anaerobic co-digestion and MEC-AcoD systems using MBP accelerants. Notably, combining MBP and MEC could effectively promote anaerobic co-digestion performance.


Asunto(s)
Reactores Biológicos , Metano , Anaerobiosis , Fósforo , Dióxido de Carbono , Digestión
4.
Bioresour Technol ; 348: 126729, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35063625

RESUMEN

Plenty of refractory and environmentally hazardous bag-filter gas dust (BGD) is produced in the iron-making process. The effects of untreated BGD on anaerobic digestion (AD) with cattle manure were investigated. The BGD had the potential to boost the methane yield and digestate utilization considerably. The digester with 2.0 wt% BGD gained the highest methane yield (256.3 mL/g VS) and chemical oxygen demand removal rate (56.8%), 51.3% and 20.1% higher than that (169.4 mL/g VS, 47.3%) of the control group, respectively. The digestates with BGD possessed a utilization potential with the stability of 49.5-57.9% and fertility of 4.65-4.86%. Electrochemical measurements demonstrated that 2.0 wt% BGD improved the electron transport capacity of the AD system and increased the limiting current and redox peak current by 40.3% and 12.9%, respectively. A strategy for understanding the BGD reinforcing methanogenesis was proposed. This work also provides a technical support for recycling the BGD.


Asunto(s)
Estiércol , Metano , Anaerobiosis , Animales , Biocombustibles , Reactores Biológicos , Bovinos , Polvo
5.
Bioresour Technol ; 347: 126341, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34785328

RESUMEN

A series of surface-annealed titanium spheres (Ti-A, Ti-B, and Ti-C) in different atmospheres were used as accelerants in anaerobic co-digestion (AcoD) systems under magnetic field (MF). Surface-annealed titanium spheres and MF exhibit remarkable coupling and promoting effects on the AcoD performance. The cumulative biogas yield (435.84-552.60 mL/g VS) and total chemical oxygen demand (COD) degradation efficiency (59.76%-71.28%) of the AcoD systems with TiMF, Ti-AMF, Ti-BMF, and Ti-CMF were significantly higher than control (357.66 mL/g VS and 51.5%). The digestates of the AcoD system with surface-annealed Ti spheres delivered excellent stability (49.83%-59.90%) and fertilizer (4.21%-4.56%). This work clarifies the possible role of surface-annealed Ti spheres in enhancing methanogenesis.


Asunto(s)
Estiércol , Metano , Anaerobiosis , Atmósfera , Biocombustibles , Reactores Biológicos , Digestión , Titanio
6.
Bioresour Technol ; 338: 125520, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34284294

RESUMEN

Microbial electrolysis cells (MECs) and exogenous accelerants can augment anaerobic digestion performance. Herein, MECs and coconut-shell-derived bio-based carbon (CBC) accelerant are adopted to strengthen anaerobic co-digestion of cow manure and aloe peel waste. The MEC with the voltage of 0.6 V and CBC accelerant of 0.15 wt.% gained the highest cumulative biogas yield (444.20 NmL/g VS) and chemical oxygen demand removal rate (75.46%), which are 80.25% and 58.33% higher than those (246.44 NmL/g VS, 47.66%) of the blank group, respectively. The digestates embodied a utilization potential with thermogravimetric loss of 37.12%-50.67% and total nutrient content of 35.36-51.58 g/kg. These results benefited from excellent electrocatalytic activity of MECs and physicochemical properties of CBC accelerant. A general strategy for understanding improved methanogenesis was proposed based on integrated effects of MECs and CBC accelerant. This work will shed light on development of anaerobic co-digestion by combining MECs and bio-based carbon accelerants.


Asunto(s)
Aloe , Estiércol , Anaerobiosis , Animales , Biocombustibles , Reactores Biológicos , Carbono , Bovinos , Cocos , Digestión , Electrólisis , Metano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...