Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(16): 18643-18653, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680323

RESUMEN

Idiopathic uveitis (IU) and Vogt-Koyanagi-Harada (VKH) syndrome are common types of uveitis. However, the exact pathological mechanisms of IU and VKH remain unclear. Proteomic analysis of aqueous humor (AH), the most easily accessible intraocular fluid and a key site of uveitis development, may reveal potential biomarkers and elucidate uveitis pathogenesis. In this study, 44 AH samples, including 12 IU cases, 16 VKH cases, and 16 controls, were subjected to label-free quantitative proteomic analysis. We identified 557 proteins from a comprehensive spectral library of 634 proteins across all samples. The AH proteomic profiles of the IU and VKH groups were different from those of the control group. Differential analysis revealed a shared pattern of extracellular matrix disruption and downregulation of retinal cellular proteins in the IU and VKH groups. Enrichment analysis revealed a protein composition indicative of inflammation in the AH of the IU and VKH groups but not in that of the control group. In the IU and VKH groups, innate immunity played an important role, as indicated by complement cascade activation and overexpression of innate immune cell markers. Extreme gradient boosting (XGBoost), an efficient and robust machine learning algorithm, was subsequently used to screen potential biomarkers for classifying the IU, VKH, and control groups. Transferrin and complement factor B were deemed the most important and represent a promising biomarker panel. These proteins were validated by high-resolution multiple reaction monitoring (HR-MRM) in an independent validation cohort. A classification decision tree was subsequently built for the diagnosis. Our findings further the understanding of the underlying molecular mechanisms in IU and VKH and facilitate the development of potential therapeutic and diagnostic strategies.

2.
Exp Eye Res ; 239: 109724, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37981180

RESUMEN

Diabetic macular edema (DME) is the most common cause of blindness in patients with diabetic retinopathy. To investigate the proteomic profiles of the aqueous humor (AH) of individuals with diabetic macular edema (DME), AH samples were collected from patients with non-diabetes mellitus (NDM), DM, nonproliferative diabetic retinopathy (NPDR), and DME. We performed comparative proteomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analyses. We identified 425 proteins in these AH samples, of which 113 showed changes in expression in DME compared with NDM, 95 showed changes in expression in DME vs. DM, and 84 showed changes in expression in DME compared with NPDR. The bioinformatics analysis suggested that DME is closely associated with platelet degranulation, oxidative stress-related pathway, and vascular-related pathways. Upregulation of haptoglobin (HP) and downregulation of fibrillin 1 (FBN1) were validated by ELISA. Receiver operating characteristic (ROC) analysis showed that HP and FBN1 could distinguish DME from NPDR with areas under the curve of 0.987 (p = 0.00608) and 0.791 (p = 0.00629), respectively. The findings provide potential clues for further analysis of the molecular mechanisms and the development of new treatments for DME. HP and FBN1 may be potential key proteins and therapeutic targets in human DME. The proteomics dataset generated has been deposited to the ProteomeXchange/iProX Consortium with Identifier: PXD033404/IPX0004353001.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Edema Macular , Humanos , Retinopatía Diabética/metabolismo , Edema Macular/metabolismo , Humor Acuoso/metabolismo , Proteómica/métodos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Diabetes Mellitus/metabolismo
3.
Exp Eye Res ; 239: 109752, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123010

RESUMEN

Fuchs uveitis syndrome (FUS) is a commonly misdiagnosed uveitis syndrome often presenting as an asymptomatic mild inflammatory condition until complications arise. The diagnosis of this disease remains clinical because of the lack of specific laboratory tests. The aqueous humor (AH) is a complex fluid containing nutrients and metabolic wastes from the eye. Changes in the AH protein provide important information for diagnosing intraocular diseases. This study aimed to analyze the proteomic profile of AH in individuals diagnosed with FUS and to identify potential biomarkers of the disease. We used liquid chromatography-tandem mass spectrometry-based proteomic methods to evaluate the AH protein profiles of all 37 samples, comprising 15 patients with FUS, six patients with Posner-Schlossman syndrome (PSS), and 16 patients with age-related cataract. A total of 538 proteins were identified from a comprehensive spectral library of 634 proteins. Subsequent differential expression analysis, enrichment analysis, and construction of key sub-networks revealed that the inflammatory response, complement activation and hypoxia might be crucial in mediating the process of FUS. The hypoxia inducible factor-1 may serve as a key regulator and therapeutic target. Additionally, the innate and adaptive immune responses are considered dominant in the patients with FUS. A diagnostic model was constructed using machine-learning algorithm to classify FUS, PSS, and normal controls. Two proteins, complement C1q subcomponent subunit B and secretogranin-1, were found to have the highest scores by the Extreme Gradient Boosting, suggesting their potential utility as a biomarker panel. Furthermore, these two proteins as biomarkers were validated in a cohort of 18 patients using high resolution multiple reaction monitoring assays. Therefore, this study contributes to advancing of the current knowledge of FUS pathogenesis and promotes the development of effective diagnostic strategies.


Asunto(s)
Glaucoma de Ángulo Abierto , Uveítis , Humanos , Humor Acuoso/metabolismo , Proteómica , Uveítis/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Biomarcadores/metabolismo , Hipoxia/metabolismo
4.
Nat Commun ; 14(1): 4373, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474525

RESUMEN

Mesenchymal stem cells (MSCs) possess potent immunomodulatory activity and have been extensively investigated for their therapeutic potential in treating inflammatory disorders. However, the mechanisms underlying the immunosuppressive function of MSCs are not fully understood, hindering the development of standardized MSC-based therapies for clinical use. In this study, we profile the single-cell transcriptomes of MSCs isolated from adipose tissue (AD), bone marrow (BM), placental chorionic membrane (PM), and umbilical cord (UC). Our results demonstrate that MSCs undergo a progressive aging process and that the cellular senescence state influences their immunosuppressive activity by downregulating PD-L1 expression. Through integrated analysis of single-cell transcriptomic and proteomic data, we identify GATA2 as a regulator of MSC senescence and PD-L1 expression. Overall, our findings highlight the roles of cell aging and PD-L1 expression in modulating the immunosuppressive efficacy of MSCs and implicating perinatal MSC therapy for clinical applications in inflammatory disorders.


Asunto(s)
Antígeno B7-H1 , Células Madre Mesenquimatosas , Humanos , Femenino , Embarazo , Regulación hacia Abajo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Multiómica , Proteómica , Placenta/metabolismo , Senescencia Celular/genética , Células Madre Mesenquimatosas/metabolismo
5.
Exp Eye Res ; 234: 109572, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37451566

RESUMEN

Our previous research shown that tumor necrosis factor-alpha-induced protein 8 (TNFAIP8) is elevated in the plasma extracellular vesicles and vitreous humor in diabetic retinopathy (DR). TNFAIP8 also significantly increases the viability of human retinal microvascular endothelial cells (HRMECs) and promotes cell migration and tube formation in vitro. To comprehensively explore its role in DR, we investigated the effect of TNFAIP8 on DR development using an animal model in this study. A TNFAIP8-overexpressing adeno-associated virus (AAV) vector and streptozotocin-induced mouse model was used. The AAV-TNFAIP8 vector was injected into the mice intravitreally, and the effect was evaluated. The evaluation included analysis of retinal structure and function using electroretinography, optical coherence tomography, and histological assessment. The influence of TNFAIP8 on the avascular area, retinal leukostasis, and the expression levels of inflammatory factors was also determined. TNFAIP8 significantly decreased a/b-wave amplitude and retinal thickness in diabetic mice. Histological assessment showed that TNFAIP8 aggravated pathological abnormalities with distorted organization of the retina. TNFAIP8 also significantly increased the avascular area, leukostasis, and the expression of inflammatory factors, such as TNFα, IL1ß, ICAM1, and GFAP, in the retina. The results of this study support the role of TNFAIP8 in DR pathogenesis. A mechanistic understanding of TNFAIP8 may offer novel therapeutic strategies.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Leucostasis , Ratones , Humanos , Animales , Retinopatía Diabética/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Diabetes Mellitus Experimental/metabolismo , Factor VIII/metabolismo , Factor VIII/farmacología , Factor VIII/uso terapéutico , Células Endoteliales/metabolismo , Leucostasis/metabolismo , Retina/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
6.
J Transl Med ; 21(1): 388, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322475

RESUMEN

BACKGROUND: Uveitis and posterior scleritis are sight-threatening diseases with undefined pathogenesis and accurate diagnosis remains challenging. METHODS: Two plasma-derived extracellular vesicle (EV) subpopulations, small and large EVs, obtained from patients with ankylosing spondylitis-related uveitis, Behcet's disease uveitis, Vogt-Koyanagi-Harada syndrome, and posterior scleritis were subjected to proteomics analysis alongside plasma using SWATH-MS. A comprehensive bioinformatics analysis was performed on the proteomic profiles of sEVs, lEVs, and plasma. Candidate biomarkers were validated in a new cohort using ELISA. Pearson correlation analysis was performed to analyze the relationship between clinical parameters and proteomic data. Connectivity map database was used to predict therapeutic agents. RESULTS: In total, 3,668 proteins were identified and over 3000 proteins were quantified from 278 samples. When comparing diseased group to healthy control, the proteomic profiles of the two EV subgroups were more correlated with disease than plasma. Comprehensive bioinformatics analysis highlighted potential pathogenic mechanisms for these diseases. Potential biomarker panels for four diseases were identified and validated. We found a negative correlation between plasma endothelin-converting enzyme 1 level and mean retinal thickness. Potential therapeutic drugs were proposed, and their targets were identified. CONCLUSIONS: This study provides a proteomic landscape of plasma and EVs involved in ankylosing spondylitis-related uveitis, Behcet's disease uveitis, Vogt-Koyanagi-Harada syndrome, and posterior scleritis, offers insights into disease pathogenesis, identifies valuable biomarker candidates, and proposes promising therapeutic agents.


Asunto(s)
Síndrome de Behçet , Vesículas Extracelulares , Escleritis , Espondilitis Anquilosante , Uveítis , Síndrome Uveomeningoencefálico , Humanos , Síndrome de Behçet/diagnóstico , Síndrome de Behçet/complicaciones , Síndrome Uveomeningoencefálico/diagnóstico , Síndrome Uveomeningoencefálico/complicaciones , Escleritis/etiología , Espondilitis Anquilosante/complicaciones , Proteómica , Uveítis/complicaciones
7.
Front Immunol ; 13: 864956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422798

RESUMEN

Autoimmune uveitis is a major cause of vision loss and glucocorticoids are major traditional medications, which may induce serious complications. Rapamycin has been demonstrated to exhibit immunosuppressive effects and is promising to be used in treating uveitis by intravitreal injection. However, repeated and frequent intravitreal injections increase the risk of severe ocular complications, while the efficacy of subconjunctival injection of rapamycin is low since it is difficult for rapamycin to penetrate eyeball. Recently, small extracellular vesicles (sEVs) have attracted considerable research interest as natural drug delivery systems that can efficiently cross tissues and biological membranes. SEVs derived from mesenchymal stem cells (MSC-sEVs) also can exert immunosuppressive effect and ameliorate experimental autoimmune uveitis (EAU). The aim of this study was to construct a Rapamycin-loaded MSC-sEVs delivery system (Rapa-sEVs) and investigate its therapeutic effect on EAU by subconjunctival injection. Rapa-sEVs were prepared by sonication and characterized by nanoparticle tracking analysis, transmission electron microscopy, and western blotting. Clinical and histological scores were obtained to assess the treatment efficacy. Additionally, T cell infiltration was evaluated by flow cytometry. The results indicated that Rapa-sEVs could reach the retinal foci after subconjunctival injection. Compared to sEVs and rapamycin alone, Rapa-sEVs can produce a more marked therapeutic effect and reduce ocular inflammatory cell infiltration. Overall, MSC-sEVs have significant potential for the delivery of rapamycin to treat EAU. Subconjunctival injection of Rapa-sEVs may be contender for efficacious steroid-sparing immunomodulatory therapy.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Uveítis , Vesículas Extracelulares/patología , Humanos , Inmunomodulación , Células Madre Mesenquimatosas/patología , Sirolimus/farmacología , Sirolimus/uso terapéutico , Uveítis/tratamiento farmacológico
8.
Talanta ; 224: 121819, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379044

RESUMEN

Lysine methylations are common protein post-translational modifications (PTMs), that play significant roles in regulating gene activities. Studies of their functions and connections with diseases have important values. However, due to the small variations from their native structures and very low component proportions, it is very difficult to extract methylated peptides from biological mixtures. In this research, a new material that utilizes sulfonated calix[4]arene (SC4A) as the recognition unit and silica coated with TiO2 as carrier, denoted as SiO2@TiO2@SC4A, was synthesized. The equilibrium binding experiments demonstrated that SiO2@TiO2@SC4A can identify lysine and arginine methylation and peptides with these methylated residues. The maximum isotherm binding capacities are 70.0, 55.9, 31.4 and 24.8 µmol g-1 for Lys(Me3), Lys(Me)2, Lys(Me) and Lys, respectively. It demonstrated that the higher the degree of methylation, the stronger the interactions. In addition, the analyses of high performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) demonstrated that peptides with methylated lysine or arginine can be selectively extracted from spiked histone trypsin digestion. The recoveries for the spiked GGAK(Me)R, GGAKR(Me)2 and GGAK(Me)3R are 83%, 78%, and 84% respectively. The experiments from the nuclear extracts of HeLa cells also illustrated that SiO2@TiO2@SC4A holds a potential in the enrichment and identification of lysine methylations.


Asunto(s)
Lisina , Dióxido de Silicio , Calixarenos , Células HeLa , Humanos , Metilación , Fenoles , Procesamiento Proteico-Postraduccional , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Titanio
9.
Anal Chem ; 91(5): 3221-3226, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30721620

RESUMEN

Phosphotyrosine (pY) serves as a docking site for the recognition proteins containing pY-binding (pYB) modules, such as the SH2 domain, to mediate cell signal transduction. Thus, it is vital to profile these binding proteins for understanding of signal regulation. However, identification of pYB proteins remains a significant challenge due to their low abundance and typically weak and transient interactions with pY sites. Herein, we designed and prepared a pY-peptide photoaffinity probe for the robust and specific enrichment and identification of its binding proteins. Using SHC1-pY317 as a paradigm, we showed that the developed probe enables to capture target protein with high selectivity and remarkable specificity even in a complex context. Notably, we expanded the strategy to a combinatorial pY-peptide-based photoaffinity probe by using combinatorial peptide ligand library (CPLL) technique and identified 24 SH2 domain proteins, which presents a deeper profiling of pYB proteins than previous reports using affinity probes. Moreover, the method can be used to mine putative pYB proteins and confirmed PKN2 as a selective binder to pY, expanding the repertoire of known domain proteins. Our approach provides a general strategy for rapid and robust interrogating pYB proteins and will promote the understanding of the signal transduction mechanism.


Asunto(s)
Marcadores de Afinidad/química , Proteínas Bacterianas/metabolismo , Péptidos/metabolismo , Fosfotirosina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Rayos Ultravioleta , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Biblioteca de Péptidos , Péptidos/química , Fosfotirosina/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA