Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pediatr Res ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902452

RESUMEN

BACKGROUND: Children born with very low birth weight (VLBW) are at higher risk for cognitive impairment, including language deficits and sensorimotor difficulties. Voice-evoked response (P1m), which has been suggested as a language development biomarker in young children, remains unexplored for its efficacy in VLBW children. Furthermore, the relation between P1m and sensory difficulties in VLBW children remains unclear. METHODS: 40 children with VLBW were recruited at 5-to-6 years old (26 male, 14 female, mean age of months ± SD, 80.0 ± 4.9). We measured their voice-evoked brain response using child-customized magnetoencephalography (MEG) and examined the relation between P1m and language conceptual inference ability and sensory characteristics. RESULTS: The final sample comprised 36 children (23 boys, 13 girls; ages 61-86 months; gestational ages 24-36 weeks). As a result of multiple regression analysis, voice-evoked P1m in the left hemisphere was correlated significantly with language ability (ß = 0.414 P = 0.015) and sensory hypersensitivity (ß = 0.471 P = 0.005). CONCLUSION: Our findings indicate that the relation between P1m and language conceptual inference ability observed in term children in earlier studies is replicated in VLBW children, and suggests P1m intensity as a biomarker of sensory sensitivity characteristics. IMPACT: We investigated brain functions related to language development and sensory problems in very low birth-weight children. In very low birth weight children at early school age, brain responses to human voices are associated with language conceptual inference ability and sensory hypersensitivity. These findings promote a physiological understanding of both language development and sensory characteristics in very low birth weight children.

2.
PLoS One ; 19(3): e0298020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38457397

RESUMEN

In previous magnetoencephalography (MEG) studies, children with autism spectrum disorder (ASD) have been shown to respond differently to speech stimuli than typically developing (TD) children. Quantitative evaluation of this difference in responsiveness may support early diagnosis and intervention for ASD. The objective of this research is to investigate the relationship between syllable-induced P1m and social impairment in children with ASD and TD children. We analyzed 49 children with ASD aged 40-92 months and age-matched 26 TD children. We evaluated their social impairment by means of the Social Responsiveness Scale (SRS) and their intelligence ability using the Kaufman Assessment Battery for Children (K-ABC). Multiple regression analysis with SRS score as the dependent variable and syllable-induced P1m latency or intensity and intelligence ability as explanatory variables revealed that SRS score was associated with syllable-induced P1m latency in the left hemisphere only in the TD group and not in the ASD group. A second finding was that increased leftward-lateralization of intensity was correlated with higher SRS scores only in the ASD group. These results provide valuable insights but also highlight the intricate nature of neural mechanisms and their relationship with autistic traits.


Asunto(s)
Trastorno del Espectro Autista , Niño , Humanos , Trastorno del Espectro Autista/diagnóstico , Magnetoencefalografía , Inteligencia/fisiología , Pruebas de Inteligencia , Grupo Paritario
3.
PCN Rep ; 2(1): e68, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38868414

RESUMEN

Aim: This study aimed to investigate gamma oscillations related to face processing of children with autism spectrum disorders and typically developed children using magnetoencephalography. Methods: We developed stimuli that included naturalistic real-time eye-gaze situations between participants and their mothers. Eighteen young children with autism spectrum disorders (62-97 months) and 24 typically developed children (61-79 months) were included. The magnetoencephalography data were analyzed in the bilateral banks of the superior temporal sulcus, fusiform gyrus, and pericalcarine cortex for frequency ranges 30-59 and 61-90 Hz. The gamma oscillation normalized values were calculated to compare the face condition (children gazing at mother's face) and control measurements (baseline) using the following formula: (face - control)/(face + control). Results: The results revealed significant differences in gamma oscillation normalized values in the low gamma band (30-59 Hz) in the right banks of the superior temporal sulcus, right fusiform gyrus, and right pericalcarine cortex between children with autism spectrum disorders and typically developed children. Furthermore, there were significant differences in gamma oscillation normalized values in the high gamma band (61-90 Hz) in the right banks of the superior temporal sulcus, bilateral fusiform gyrus, and bilateral pericalcarine cortex between the groups. Conclusion: This report is the first magnetoencephalography study revealing atypical face processing in young children with autism spectrum disorders using relevant stimuli between participants and their mothers. Our naturalistic paradigm provides a useful assessment of social communication traits and a valuable insight into the underlying neural mechanisms in children with autism spectrum disorders.

4.
Sci Rep ; 12(1): 17993, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289267

RESUMEN

Magnetoencephalography (MEG) is a functional neuroimaging technique that noninvasively detects the brain magnetic field from neuronal activations. Conventional MEG measures brain signals using superconducting quantum interference devices (SQUIDs). SQUID-MEG requires a cryogenic environment involving a bulky non-magnetic Dewar flask and the consumption of liquid helium, which restricts the variability of the sensor array and the gap between the cortical sources and sensors. Recently, miniature optically pumped magnetometers (OPMs) have been developed and commercialized. OPMs do not require cryogenic cooling and can be placed within millimeters from the scalp. In the present study, we arranged six OPM sensors on the temporal area to detect auditory-related brain responses in a two-layer magnetically shielded room. We presented the auditory stimuli of 1 kHz pure-tone bursts with 200 ms duration and obtained the M50 and M100 components of auditory-evoked fields. We delivered the periodic stimuli with a 40 Hz repetition rate and observed the gamma-band power changes and inter-trial phase coherence of auditory steady-state responses at 40 Hz. We found that the OPM sensors have a performance comparable to that of conventional SQUID-MEG sensors, and our results suggest the feasibility of using OPM sensors for functional neuroimaging and brain-computer interface applications.


Asunto(s)
Helio , Magnetoencefalografía , Magnetoencefalografía/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuroimagen , Neuroimagen Funcional
5.
Neuropsychopharmacol Rep ; 42(3): 352-355, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35733350

RESUMEN

AIM: The receptive language ability of individuals with autism spectrum disorder (ASD) seems to lag behind expressive language ability. Several autism-related genes may influence this developmental delay. Polymorphism of one such gene, namely, the contactin-associated protein-like 2 gene (CNTNAP2), affects receptive language in individuals with language delay. However, the association between CNTNAP2 polymorphism and receptive language in individuals with no language delay remains unclear. METHODS: We included 59 children with ASD and 57 children with typical development in this study and investigated this association using coarse-grained exact matching. RESULTS: We present the first evidence of an association between CNTNAP2 rs2710102 (A-allele carrier) and reduced receptive language ability in children with ASD whose language development was not delayed. Similarly, among children with typical development, A-allele carriers had lower receptive language ability, but the difference was non-significant. CONCLUSIONS: It is possible that the effect of rs2710102 on receptive language ability is larger in the presence of autism-related genes. Consequently, we speculate that the effect of rs2710102 on receptive language ability would be exerted in combination with other genes. These findings provide new insights into the genetic interactions between mutations associated with common language disorders and ASD and identify molecular mechanisms and risk alleles that contribute to receptive vocabulary. These findings also provide practical guidance in terms of providing candidate genetic markers that may provide opportunities for targeted early intervention to stratify risk and improve prognosis for poor receptive language development in children with ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Desarrollo del Lenguaje , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/genética , Niño , Contactinas/genética , Marcadores Genéticos , Humanos , Desarrollo del Lenguaje , Trastornos del Desarrollo del Lenguaje/complicaciones , Trastornos del Desarrollo del Lenguaje/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
6.
PCN Rep ; 1(4): e64, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38868651

RESUMEN

Aim: Although atypical sensory motor processing has been investigated in children with autism spectrum disorder (ASD), whether or not atypical sensory motor processing is related to altered language function in children with ASD remains unclear. Methods: This study examined the relationship between sensory motor processing and language conceptual inference ability in 3-10-year-old children with (n = 61) and without (n = 114) ASD. Language performance was assessed using the language conceptual inference task of the Kaufman Assessment Battery for Children (K-ABC). Sensory processing was assessed using the Caregiver Sensory Profile. Results: In children with ASD, altered processing of the fine motor/perceptual factor scored by sensory profile was found to be significantly related to language conceptual inference ability in the K-ABC, representing the integrated abilities of language comprehension and language expression, which reflect language semantic concept formation. Conclusions: For children with ASD, the results suggest a relationship between difficulties of integrating sensory information perceived from the body adjusting fine movement and deficiencies of language semantic conceptual formation.

7.
PLoS One ; 16(12): e0260548, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34898614

RESUMEN

Sub-threshold autistic traits are common in the general population. Children with sub-threshold autistic traits have difficulties with social adaptation. Contactin-associated protein-like 2 (CNTNAP2) is associated with the development of Autism spectrum disorder (ASD) and the single-nucleotide polymorphism rs2710102 (G/A) of CNTNAP2 is suggested to contribute to sub-threshold social impairments and intellectual disabilities. We recruited 67 children with Autistic disorder (AD) (49 boys, 18 girls, aged 38-98 months) and 57 typically developing (TD) children (34 boys, 23 girls, aged 53-90 months). We assessed the participants' intelligence and social reciprocity using the Kaufman Assessment Battery for Children (K-ABC) and the Social Responsiveness Scale (SRS), respectively. Genomic DNA was extracted from the buccal mucosa and genotyped for rs2710102. A chi-square test revealed a significant association between genotype and group [χ2(2) = 6.56, p = 0.038]. When a co-dominant model was assumed, the results from linear regression models demonstrated that TD children with A-carriers (AA + AG) presented higher SRS T-scores [t(55) = 2.11, p = 0.039] and lower simultaneous processing scale scores of K-ABC [t(55) = -2.19, p = 0.032] than those with GG homozygotes. These associations were not significant in children with ASD. TD children with the rs2710102 A-allele may have more sub-threshold autistic traits than those with GG homozygotes, reflected in higher SRS scores and lower simultaneous processing scale scores. These results support the use of genetic evidence to detect sub-threshold autistic traits.


Asunto(s)
Trastorno Autístico/diagnóstico , Discapacidad Intelectual/diagnóstico , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Alelos , Trastorno Autístico/genética , Niño , Preescolar , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Homocigoto , Humanos , Discapacidad Intelectual/genética , Pruebas de Inteligencia , Japón , Masculino , Polimorfismo de Nucleótido Simple
8.
Front Psychiatry ; 12: 790234, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970170

RESUMEN

Measuring whole brain networks is a promising approach to extract features of autism spectrum disorder (ASD), a brain disorder of widespread regions. Objectives of this study were to evaluate properties of resting-state functional brain networks in children with and without ASD and to evaluate their relation with social impairment severity. Magnetoencephalographic (MEG) data were recorded for 21 children with ASD (7 girls, 60-89 months old) and for 25 typically developing (TD) control children (10 girls, 60-91 months old) in a resting state while gazing at a fixation cross. After signal sources were localized onto the Desikan-Killiany brain atlas, statistical relations between localized activities were found and evaluated in terms of the phase lag index. After brain networks were constructed and after matching with intelligence using a coarsened exact matching algorithm, ASD and TD graph theoretical measures were compared. We measured autism symptoms severity using the Social Responsiveness Scale and investigated its relation with altered small-worldness using linear regression models. Children with ASD were found to have significantly lower small-worldness in the beta band (p = 0.007) than TD children had. Lower small-worldness in the beta band of children with ASD was associated with higher Social Responsiveness Scale total t-scores (p = 0.047). Significant relations were also inferred for the Social Awareness (p = 0.008) and Social Cognition (p = 0.015) sub-scales. Results obtained using graph theory demonstrate a difference between children with and without ASD in MEG-derived resting-state functional brain networks, and the relation of that difference with social impairment. Combining graph theory and MEG might be a promising approach to establish a biological marker for ASD.

9.
Brain Commun ; 3(3): fcab184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34541529

RESUMEN

Many individuals with autism spectrum disorders have comorbid epilepsy. Even in the absence of observable seizures, interictal epileptiform discharges are common in individuals with autism spectrum disorders. However, how these interictal epileptiform discharges are related to autistic symptomatology remains unclear. This study used magnetoencephalography to investigate the relation between interictal epileptiform discharges and altered functional brain networks in children with autism spectrum disorders. Instead of particularly addressing individual brain regions, we specifically examine network properties. For this case-control study, we analysed 70 children with autism spectrum disorders (52 boys, 18 girls, 38-92 months old) and 19 typically developing children (16 boys, 3 girls, 48-88 months old). After assessing the participants' social reciprocity using the Social Responsiveness Scale, we constructed graphs of functional brain networks from frequency band separated task-free magnetoencephalography recordings. Nodes corresponded to Desikan-Killiany atlas-based 68 brain regions. Edges corresponded to phase lag index values between pairs of brain regions. To elucidate the effects of the existence of interictal epileptiform discharges on graph metrics, we matched each of three pairs from three groups (typically developing children, children with autism spectrum disorders who had interictal epileptiform discharges and those who did not) in terms of age and sex. We used a coarsened exact matching algorithm and applied adjusted regression analysis. We also investigated the relation between social reciprocity and the graph metric. Results show that, in children with autism spectrum disorders, the average clustering coefficient in the theta band was significantly higher in children who had interictal epileptiform discharges. Moreover, children with autism spectrum disorders who had no interictal epileptiform discharges had a significantly lower average clustering coefficient in the theta band than typically developing children had. However, the difference between typically developing children and children with autism spectrum disorder who had interictal epileptiform discharges was not significant. Furthermore, the higher average clustering coefficient in the theta band corresponded to severe autistic symptoms in children with autism spectrum disorder who had interictal epileptiform discharges. However, the association was not significant in children with autism spectrum disorders who had no interictal epileptiform discharge. In conclusion, results demonstrate that alteration of functional brain networks in children with autism spectrum disorders depends on the existence of interictal epileptiform discharges. Interictal epileptiform discharges might 'normalize' the deviation of altered brain networks in autism spectrum disorders, increasing the clustering coefficient. However, when the effect exceeds tolerance, it actually exacerbates autistic symptoms.

10.
Autism Res ; 14(12): 2603-2612, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34427050

RESUMEN

In children with autism spectrum disorder (ASD), joint attention is regarded as a predictor of language function, social skills, communication, adaptive function, and intelligence. However, existing information about the association between joint attention and intelligence is limited. Most such studies have examined children with low intelligence. For this study, we investigated whether joint attention is related to intelligence in young children with autism spectrum disorder (ASD) without severe intellectual disability. We analyzed 113 children with ASD aged 40-98 months. Their Kaufman Assessment Battery (K-ABC) Mental Processing Index (MPI) scores are 60 and more (mean 93.4). We evaluated their intelligence using K-ABC and evaluated their joint attention using ADOS-2. After we performed simple regression analyses using K-ABC MPI and its nine subscales as dependent variables, using joint attention as the independent variable, we identified joint attention as a positive predictor of the MPI and its two subscales. From this result, we conclude that joint attention is related to intelligence in young children with ASD without severe intellectual disability. This result suggests a beneficial effect of early intervention targeting joint attention for children with ASD. LAY SUMMARY: Joint attention is the ability to coordinate visual attention with another person and then shift one's gaze toward an object or event. Impairment of joint attention is regarded as an early marker of autism spectrum disorder (ASD). This study revealed impairment of joint attention as associated with lower intelligence in ASD children. These results are expected to constitute a rationale for future studies, particularly addressing beneficial effects of early intervention targeting joint attention for children with ASD.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastorno del Espectro Autista/complicaciones , Niño , Preescolar , Cognición , Intervención Educativa Precoz , Humanos , Discapacidad Intelectual/complicaciones , Inteligencia
11.
Sci Rep ; 11(1): 10001, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976262

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an early onset and a strong genetic origin. Unaffected relatives may present similar but subthreshold characteristics of ASD. This broader autism phenotype is especially prevalent in the parents of individuals with ASD, suggesting that it has heritable factors. Although previous studies have demonstrated brain morphometry differences in ASD, they are poorly understood in parents of individuals with ASD. Here, we estimated grey matter volume in 45 mothers of children with ASD (mASD) and 46 age-, sex-, and handedness-matched controls using whole-brain voxel-based morphometry analysis. The mASD group had smaller grey matter volume in the right middle temporal gyrus, temporoparietal junction, cerebellum, and parahippocampal gyrus compared with the control group. Furthermore, we analysed the correlations of these brain volumes with ASD behavioural characteristics using autism spectrum quotient (AQ) and systemizing quotient (SQ) scores, which measure general autistic traits and the drive to systemize. Smaller volumes in the middle temporal gyrus and temporoparietal junction correlated with higher SQ scores, and smaller volumes in the cerebellum and parahippocampal gyrus correlated with higher AQ scores. Our findings suggest that atypical grey matter volumes in mASD may represent one of the neurostructural endophenotypes of ASD.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Endofenotipos , Sustancia Gris/diagnóstico por imagen , Madres , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética
12.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807635

RESUMEN

(1) Background: Atypical auditory perception has been reported in individuals with autism spectrum disorder (ASD). Altered auditory evoked brain responses are also associated with childhood ASD. They are likely to be associated with atypical brain maturation. (2) Methods: This study examined children aged 5-8 years old: 29 with ASD but no intellectual disability and 46 age-matched typically developed (TD) control participants. Using magnetoencephalography (MEG) data obtained while participants listened passively to sinusoidal pure tones, bilateral auditory cortical response (P1m) was examined. (3) Results: Significantly shorter P1m latency in the left hemisphere was found for children with ASD without intellectual disabilities than for children with TD. Significant correlation between P1m latency and language conceptual ability was found in children with ASD, but not in children with TD. (4) Conclusions: These findings demonstrated atypical brain maturation in the auditory processing area in children with ASD without intellectual disability. Findings also suggest that ASD has a common neural basis for pure-tone sound processing and language development. Development of brain networks involved in language concepts in early childhood ASD might differ from that in children with TD.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Discapacidad Intelectual/fisiopatología , Tiempo de Reacción/fisiología , Corteza Auditiva/fisiopatología , Niño , Preescolar , Potenciales Evocados Auditivos/fisiología , Femenino , Humanos , Magnetoencefalografía/métodos , Masculino
13.
Neuroimage Clin ; 29: 102560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33494029

RESUMEN

Autism spectrum disorder (ASD) often involves dysfunction in general motor control and motor coordination, in addition to core symptoms. However, the neural mechanisms underlying motor dysfunction in ASD are poorly understood. To elucidate this issue, we focused on brain oscillations and their coupling in the primary motor cortex (M1). We recorded magnetoencephalography in 18 children with ASD, aged 5 to 7 years, and 19 age- and IQ-matched typically-developing children while they pressed a button during a video-game-like motor task. The motor-related gamma (70 to 90 Hz) and pre-movement beta oscillations (15 to 25 Hz) were analyzed in the primary motor cortex using an inverse method. To determine the coupling between beta and gamma oscillations, we applied phase-amplitude coupling to calculate the statistical dependence between the amplitude of fast oscillations and the phase of slow oscillations. We observed a motor-related gamma increase and a pre-movement beta decrease in both groups. The ASD group exhibited a reduced motor-related gamma increase and enhanced pre-movement beta decrease in the ipsilateral primary motor cortex. We found phase-amplitude coupling, in which high-gamma activity was modulated by the beta rhythm in the primary motor cortex. Phase-amplitude coupling in the ipsilateral primary motor cortex was reduced in the ASD group compared with the control group. Using oscillatory changes and their couplings, linear discriminant analysis classified the ASD and control groups with high accuracy (area under the receiver operating characteristic curve: 97.1%). The current findings revealed alterations in oscillations and oscillatory coupling, reflecting the dysregulation of motor gating mechanisms in ASD. These results may be helpful for elucidating the neural mechanisms underlying motor dysfunction in ASD, suggesting the possibility of developing a biomarker for ASD diagnosis.


Asunto(s)
Trastorno del Espectro Autista , Corteza Motora , Ritmo beta , Encéfalo , Niño , Humanos , Magnetoencefalografía
14.
PLoS One ; 15(8): e0235380, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32822358

RESUMEN

Autism spectrum disorders (ASD) are characterized by impaired social cognition and communication. In addition to social impairment, individuals with ASD often have intellectual disability. Intelligence is known to influence the phenotypic presentation of ASD. Nevertheless, the relation between intelligence and social reciprocity in people with ASD remains unclear, especially in childhood. To elucidate this relation, we analyzed 56 typically developing children (35 male, 21 female, aged 60-91 months) and 46 children with ASD (35 male, 11 female, aged 60-98 months) from university and affiliated hospitals. Their cognitive function was evaluated using the Kaufman Assessment Battery for Children. Their social cognition was assessed using the Social Responsiveness Scale. We used linear regression models to ascertain whether the associations between intelligence and social cognition of typically developing children and children with ASD are significantly different. Among the children with ASD, scores on the Kaufman Assessment Battery for Children correlated significantly with social cognition, indicating that higher intelligence is associated with better social cognition. For typically developing children, however, no significant correlation was found. One explanation might be that children with ASD fully use general intelligence for successful learning in social cognition, although extensive use of intelligence might not be necessary for TD children. Alternatively, autistic impairment in social cognition can be compensated by intelligence despite a persistent deficit in social cognition. In either case, when using the SRS as a quantitative phenotype measure for ASD, the influence of intelligence must be considered.


Asunto(s)
Trastorno del Espectro Autista/psicología , Cognición , Inteligencia Emocional , Conducta Social , Niño , Femenino , Humanos , Masculino
16.
Hum Brain Mapp ; 41(9): 2292-2301, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32090414

RESUMEN

Children make rapid transitions in their neural and intellectual development. Compared to other brain regions, the auditory cortex slowly matures, and children show immature auditory brain activity. This auditory neural plasticity largely occurs as a response to human-voice stimuli, which are presented more often than other stimuli, and can even be observed in the brainstem. Early psychologists have proposed that sensory processing and intelligence are closely related to each other. In the present study, we identified brain activity related to human-voice processing and investigated a crucial neural correlate of child development and intelligence. We also examined the neurophysiological activity patterns during human-voice processing in young children aged 3 to 8 years. We investigated auditory evoked fields (AEFs) and oscillatory changes using child-customized magnetoencephalography within a short recording time (<6 min). We examined the P1m component of AEFs, which is a predominant component observed in young children. The amplitude of the left P1m was highly correlated with age, and the amplitude of the right P1m was highly correlated with the intelligence quotient. For auditory-related oscillatory changes, we found a positive correlation between the intelligence quotient and percent change of gamma increase relative to baseline in the right auditory cortex. We replicated the finding of age-related changes in auditory brain activity in young children, which is related to the slow maturation of the auditory cortex. In addition, these results suggest a close link between intelligence and auditory sensory processing, especially in the right hemisphere.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Ondas Encefálicas/fisiología , Desarrollo Infantil/fisiología , Potenciales Evocados Auditivos/fisiología , Inteligencia/fisiología , Magnetoencefalografía , Percepción Social , Niño , Preescolar , Femenino , Lateralidad Funcional/fisiología , Ritmo Gamma/fisiología , Humanos , Masculino , Percepción del Habla/fisiología , Voz
17.
J Autism Dev Disord ; 50(5): 1809-1815, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-30078095

RESUMEN

The elucidation of odour awareness in children with autism spectrum disorders (ASD) is important. We compared the odour awareness of young children with ASD with those of typical development (TD) children using the Children's Olfactory Behavior in Everyday Life (COBEL) questionnaire, which is a self-report measure that mainly assesses odour awareness. Forty-five young boys (aged 5-6 years), including 20 children with ASD and 25 TD children, participated in this study. The total COBEL score of the young children with ASD was lower than that of the TD children (p < 0.01). Moreover, the total COBEL score was significantly correlated with the total VABS II score (p < 0.05). Our results improve understanding of the odour awareness in children with ASD.


Asunto(s)
Trastorno del Espectro Autista/psicología , Percepción Olfatoria , Niño , Preescolar , Humanos , Masculino , Odorantes/análisis , Autoinforme , Encuestas y Cuestionarios
18.
Front Psychiatry ; 9: 568, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30510521

RESUMEN

Electroencephalograms of individuals with autism spectrum disorders (ASD) show higher rates of interictal epileptiform discharges (IEDs), which are known to have an inverse association with cognitive function in typically developed (TD) children. Nevertheless, that phenomenon has not been investigated adequately in children with ASD. From university and affiliated hospitals, 163 TD children (84 male, 79 female, aged 32-89 months) and 107 children (85 male, 22 female, aged 36-98 months) with ASD without clinical seizure were recruited. We assessed their cognitive function using the Kaufman Assessment Battery for Children (K-ABC) and recorded 10 min of MEG. Original waveforms were visually inspected. Then a linear regression model was applied to evaluate the association between the IED frequency and level of their cognitive function. Significantly higher rates of IEDs were found in the ASD group than in the TD group. In the TD group, we found significant negative correlation between mental processing scale scores (MPS) and the IED frequency. However, for the ASD group, we found significant positive correlation between MPS scores and the IED frequency. In terms of the achievement scale, correlation was not significant in either group. Although we found a correlative rather than a causal effect, typically developed children with higher IED frequency might better be followed up carefully. Furthermore, for children with ASD without clinical seizure, clinicians might consider IEDs as less harmful than those observed in TD children.

19.
Mol Autism ; 9: 46, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202508

RESUMEN

Background: A growing body of anecdotal evidence indicates that the use of robots may provide unique opportunities for assisting children with autism spectrum disorders (ASD). However, previous studies investigating the effects of interventions using robots on joint attention (JA) in children with ASD have shown insufficient results. The robots used in these studies could not turn their eyes, which was a limitation preventing the robot from resembling a human agent. Methods: We compared the behavior of children with ASD with that of children with typical development (TD) during a JA elicitation task while the children interacted with either a human or a robotic agent. We used the robot "CommU," which has clear eyes and can turn its eyes, for the robotic intervention. The age range of the participants was limited to 5-6 years. Results: Sixty-eight participants participated in this study, including 30 (10 females and 20 males) children with ASD and 38 (13 females and 25 males) children with TD. The participants were randomly assigned to one of the following two groups: the robotic intervention group or the control group. JA in the children with ASD was better during the robotic intervention than during the human agent intervention. These children exhibited improved performance in the JA task with human after interacting with the robot CommU. JA was differentially facilitated by the human and robotic agents between the ASD and TD children. Conclusions: The findings of this study significantly contribute to the literature on the impact of robots on JA and provide information regarding the suitability of specific robot types for therapeutic use.


Asunto(s)
Atención , Trastorno del Espectro Autista/psicología , Robótica , Niño , Conducta Infantil , Preescolar , Femenino , Humanos , Masculino , Conducta Social
20.
J Neurosci ; 38(36): 7878-7886, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30104338

RESUMEN

Autism is hypothesized to result in a cortical excitatory and inhibitory imbalance driven by inhibitory interneuron dysfunction, which is associated with the generation of gamma oscillations. On the other hand, impaired motor control has been widely reported in autism. However, no study has focused on the gamma oscillations during motor control in autism. In the present study, we investigated the motor-related gamma oscillations in autism using magnetoencephalography. Magnetoencephalographic signals were recorded from 14 right-handed human children with autism (5 female), aged 5-7 years, and age- and IQ-matched 15 typically developing children during a motor task using their right index finger. Consistent with previous studies, the autism group showed a significantly longer button response time and reduced amplitude of motor-evoked magnetic fields. We observed that the autism group exhibited a low peak frequency of motor-related gamma oscillations from the contralateral primary motor cortex, and these were associated with the severity of autism symptoms. The autism group showed a reduced power of motor-related gamma oscillations in the bilateral primary motor cortex. A linear discriminant analysis using the button response time and gamma oscillations showed a high classification performance (86.2% accuracy). The alterations of the gamma oscillations in autism might reflect the cortical excitatory and inhibitory imbalance. Our findings provide an important clue into the behavioral and neurophysiological alterations in autism and a potential biomarker for autism.SIGNIFICANCE STATEMENT Currently, the diagnosis of autism has been based on behavioral assessments, and a crucial issue in the diagnosis of autism is to identify objective and quantifiable clinical biomarkers. A key hypothesis of the neurophysiology of autism is an excitatory and inhibitory imbalance in the brain, which is associated with the generation of gamma oscillations. On the other hand, motor deficits have also been widely reported in autism. This is the first study to demonstrate low motor performance and altered motor-related gamma oscillations in autism, reflecting a brain excitatory and inhibitory imbalance. Using these behavioral and neurophysiological parameters, we classified autism and control group with good accuracy. This work provides important information on behavioral and neurophysiological alterations in patients with autism.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Ritmo Gamma/fisiología , Corteza Motora/fisiopatología , Desempeño Psicomotor/fisiología , Trastorno del Espectro Autista/diagnóstico , Mapeo Encefálico , Niño , Preescolar , Sincronización Cortical/fisiología , Femenino , Humanos , Magnetoencefalografía , Masculino , Movimiento/fisiología , Tiempo de Reacción/fisiología , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...