Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125844

RESUMEN

TNF-α-induced protein 3 (TNFAIP3), commonly referred to as A20, is an integral part of the ubiquitin-editing complex that significantly influences immune regulation, apoptosis, and the initiation of diverse immune responses. The A20 protein is characterized by an N-terminal ovarian tumor (OTU) domain and a series of seven zinc finger (ZNF) domains. Mutations in the TNFAIP3 gene are implicated in various immune-related diseases, such as Behçet's disease, polyarticular juvenile idiopathic arthritis, autoimmune thyroiditis, autoimmune hepatitis, and rheumatoid arthritis. These mutations can lead to a spectrum of symptoms, including, but not limited to, recurrent fever, ulcers, rashes, musculoskeletal and gastrointestinal dysfunctions, cardiovascular issues, and respiratory infections. The majority of these mutations are either nonsense (STOP codon) or frameshift mutations, which are typically associated with immune dysfunctions. Nonetheless, missense mutations have also been identified as contributors to these conditions. These genetic alterations may interfere with several biological pathways, notably abnormal NF-κB signaling and dysregulated ubiquitination. Currently, there is no definitive treatment for A20 haploinsufficiency; however, therapeutic strategies can alleviate the symptoms in patients. This review delves into the mutations reported in the TNFAIP3 gene, the clinical progression in affected individuals, potential disease mechanisms, and a brief overview of the available pharmacological interventions for A20 haploinsufficiency. Mandatory genetic testing of the TNFAIP3 gene should be performed in patients diagnosed with autoinflammatory disorders to better understand the genetic underpinnings and guide treatment decisions.


Asunto(s)
Haploinsuficiencia , Mutación , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Humanos , Haploinsuficiencia/genética , Inflamación/genética , Predisposición Genética a la Enfermedad , Animales
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000210

RESUMEN

Neurodegeneration diseases (NDs) are a group of complex diseases primarily characterized by progressive loss of neurons affecting mental function and movement. Oxidative stress is one of the factors contributing to the pathogenesis of NDs, including Alzheimer's disease (AD). These reactive species disturb mitochondrial function and accelerate other undesirable conditions including tau phosphorylation, inflammation, and cell death. Therefore, preventing oxidative stress is one of the imperative methods in the treatment of NDs. To accomplish this, we prepared hexane and ethyl acetate extracts of Anethum graveolens (dill) and identified the major phyto-components (apiol, carvone, and dihydrocarvone) by GC-MS. The extracts and major bioactives were assessed for neuroprotective potential and mechanism in hydrogen peroxide-induced oxidative stress in the SH-SY5Y neuroblastoma cell model and other biochemical assays. The dill (extracts and bioactives) provided statistically significant neuroprotection from 0.1 to 30 µg/mL by mitigating ROS levels, restoring mitochondrial membrane potential, reducing lipid peroxidation, and reviving the glutathione ratio. They moderately inhibited acetylcholine esterase (IC50 dill extracts 400-500 µg/mL; carvone 275.7 µg/mL; apiole 388.3 µg/mL), displayed mild anti-Aß1-42 fibrilization (DHC 26.6%) and good anti-oligomerization activity (>40% by dill-EA, carvone, and apiole). Such multifactorial neuroprotective displayed by dill and bioactives would help develop a safe, low-cost, and small-molecule drug for NDs.


Asunto(s)
Anethum graveolens , Neuroblastoma , Fármacos Neuroprotectores , Estrés Oxidativo , Extractos Vegetales , Semillas , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Línea Celular Tumoral , Extractos Vegetales/farmacología , Extractos Vegetales/química , Neuroblastoma/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Estrés Oxidativo/efectos de los fármacos , Anethum graveolens/química , Semillas/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno , Fitoquímicos/farmacología , Fitoquímicos/química , Supervivencia Celular/efectos de los fármacos , Acetilcolinesterasa/metabolismo
3.
Pharmaceutics ; 16(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931956

RESUMEN

Therapeutics for actively targeting over-expressed receptors are of great interest because the majority of diseased tissues originate from normal cells and do not possess a unique receptor from which they can be differentiated. One such receptor is CD44, which has been shown to be highly overexpressed in many breast cancers and other types of cancer cells. While CD44 has been documented to express low levels in normal adult neurons, astrocytes, and microglia, this receptor may be overexpressed by neuroblastoma and neuroglioma. If differential expression exists between normal and cancerous cells, hyaluronan (HA) could be a useful carrier that targets carcinomas. Thus, HA was conjugated with resveratrol (HA-R), and its efficacy was tested on cortical-neuroblastoma hybrid, neuroblastoma, and neuroglioma cells. Confocal and flow cytometry showed these cells express CD44 and are able to bind and uptake HA-R. The toxicity of HA-R correlated well with CD44 expression in this study. Therefore, conjugating resveratrol and other chemotherapeutics to HA could minimize the side effects for normal cells within the brain and nervous system and could be a viable strategy for developing targeted therapies.

4.
Nanomaterials (Basel) ; 14(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38921909

RESUMEN

Rapid advancements in nanotechnology have expanded its applications and synergistic impact on modern nanosystems. The comprehensive assessment of nanomaterials' safety for human exposure has become crucial and heightened. In addition to the characterization of cell proliferation and apoptosis, probing the implication of autophagy is vital for understanding the ramification of nanomaterials. Hence, HEK-293 kidney cells were employed to understand the changes in induction and perturbation of autophagy in cells by iron oxide (Fe3O4) and silica (SiO2) nanoparticles. Interestingly, Fe3O4 worked as a potent modulator of the autophagy process through its catalytic performance, which can develop better than that of SiO2 nanoparticles mechanism, stressing their therapeutic implication in the understanding of cell behaviors. The quantification of reactive oxygen species (ROS) was measured along with the process of autophagy during cell growth. This modulated autophagy will help in cell fate determination in complementary therapy for disease treatment, provide a clinical strategy for future study.

5.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732025

RESUMEN

Alzheimer's disease (AD) is characterized by amyloid beta (Aß) buildup and neuronal degeneration. An association between low serum vitamin D levels and an increased risk of AD has been reported in several epidemiological studies. Calcitriol (1,25-dihydroxycholecalciferol) is the active form of vitamin D, and is generated in the kidney and many other tissues/organs, including the brain. It is a steroid hormone that regulates important functions like calcium/phosphorous levels, bone mineralization, and immunomodulation, indicating its broader systemic significance. In addition, calcitriol confers neuroprotection by mitigating oxidative stress and neuroinflammation, promoting the clearance of Aß, myelin formation, neurogenesis, neurotransmission, and autophagy. The receptors to which calcitriol binds (vitamin D receptors; VDRs) to exert its effects are distributed over many organs and tissues, representing other significant roles of calcitriol beyond sustaining bone health. The biological effects of calcitriol are manifested through genomic (classical) and non-genomic actions through different pathways. The first is a slow genomic effect involving nuclear VDR directly affecting gene transcription. The association of AD with VDR gene polymorphisms relies on the changes in vitamin D consumption, which lowers VDR expression, protein stability, and binding affinity. It leads to the altered expression of genes involved in the neuroprotective effects of calcitriol. This review summarizes the neuroprotective mechanism of calcitriol and the role of VDR polymorphisms in AD, and might help develop potential therapeutic strategies and markers for AD in the future.


Asunto(s)
Enfermedad de Alzheimer , Calcitriol , Receptores de Calcitriol , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Humanos , Calcitriol/metabolismo , Animales , Polimorfismo Genético , Predisposición Genética a la Enfermedad
6.
Alzheimers Dement ; 20(4): 2731-2741, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38411315

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) involves the complement cascade, with complement component 3 (C3) playing a key role. However, the relationship between C3 and amyloid beta (Aß) in blood is limited. METHODS: Plasma C3 and Aß oligomerization tendency (AßOt) were measured in 35 AD patients and 62 healthy controls. Correlations with cerebrospinal fluid (CSF) biomarkers, cognitive impairment, and amyloid positron emission tomography (PET) were analyzed. Differences between biomarkers were compared in groups classified by concordances of biomarkers. RESULTS: Plasma C3 and AßOt were elevated in AD patients and in CSF or amyloid PET-positive groups. Weak positive correlation was found between C3 and AßOt, while both had strong negative correlations with CSF Aß42 and cognitive performance. Abnormalities were observed for AßOt and CSF Aß42 followed by C3 changes. DISCUSSION: Increased plasma C3 in AD are associated with amyloid pathology, possibly reflecting a defense response for Aß clearance. Further studies on Aß-binding proteins will enhance understanding of Aß mechanisms in blood.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Amiloide , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Complemento C3 , Fragmentos de Péptidos/líquido cefalorraquídeo , Tomografía de Emisión de Positrones/métodos , Proteínas tau/líquido cefalorraquídeo
7.
Front Aging Neurosci ; 16: 1332455, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384937

RESUMEN

Introduction: Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic dysfunction and associated with abnormalities in the cholinergic system. However, the relationship between PD and cholinergic dysfunction, particularly in exosomes, is not fully understood. Methods: We enrolled 37 patients with PD and 44 healthy controls (HC) to investigate acetylcholinesterase (AChE) activity in CD9-positive and L1CAM-positive exosomes. Exosomes were isolated from plasma using antibody-coupled magnetic beads, and their sizes and concentrations were assessed using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Subsequently, the AChE activity in these exosomes was analyzed in relation to various clinical parameters. Results: A significant decrease in AChE activity was observed in CD9-positive exosomes derived from patients with PD, whereas no significant differences were found in L1CAM-positive exosomes. Further analysis with a larger sample size confirmed a substantial reduction in AChE activity in CD9-positive exosomes from the PD plasma, with moderate diagnostic accuracy. The decrease in AChE activity of CD9-positive exosomes did not show an association with cognitive impairment but displayed a trend toward correlation with PD progression. Discussion: The reduction in AChE activity in CD9-positive exosomes suggests potential peripheral cholinergic dysfunction in PD, independent of the central cholinergic system. The observed alterations in AChE activity provide valuable insights into the association between cholinergic dysfunction and the pathogenesis of PD.

8.
Nutrients ; 16(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38201932

RESUMEN

Cordyceps, also known as "zombie fungus", is a non-poisonous mushroom that parasitizes insects for growth and development by manipulating the host system in a way that makes the victim behave like a "zombie". These species produce promising bioactive metabolites, like adenosine, ß-glucans, cordycepin, and ergosterol. Cordyceps has been used in traditional medicine due to its immense health benefits, as it boosts stamina, appetite, immunity, longevity, libido, memory, and sleep. Neuronal loss is the typical feature of neurodegenerative diseases (NDs) (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS)) and neurotrauma. Both these conditions share common pathophysiological features, like oxidative stress, neuroinflammation, and glutamatergic excitotoxicity. Cordyceps bioactives (adenosine, N6-(2-hydroxyethyl)-adenosine, ergosta-7, 9 (11), 22-trien-3ß-ol, active peptides, and polysaccharides) exert potential antioxidant, anti-inflammatory, and anti-apoptotic activities and display beneficial effects in the management and/or treatment of neurodegenerative disorders in vitro and in vivo. Although a considerable list of compounds is available from Cordyceps, only a few have been evaluated for their neuroprotective potential and still lack information for clinical trials. In this review, the neuroprotective mechanisms and safety profile of Cordyceps extracts/bioactives have been discussed, which might be helpful in the identification of novel potential therapeutic entities in the future.


Asunto(s)
Agaricales , Cordyceps , Fármacos Neuroprotectores , Fármacos Neuroprotectores/farmacología , Neuroprotección , Adenosina
9.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203287

RESUMEN

A pathogenic mutation in presenilin-1 (PSEN1), His214Asn, was found in a male patient with memory decline at the age of 41 in Korea for the first time. The proband patient was associated with a positive family history from his father, paternal aunt, and paternal grandmother without genetic testing. He was diagnosed with early onset Alzheimer's disease (EOAD). PSEN1 His214Asn was initially reported in an Italian family, where the patient developed phenotypes similar to the current proband patient. Magnetic resonance imaging (MRI) scans revealed a mild hippocampal atrophy. The amyloid positron emission tomography (amyloid-PET) was positive, along with the positive test results of the increased amyloid ß (Aß) oligomerization tendency with blood. The PSEN1 His214 amino acid position plays a significant role in the gamma-secretase function, especially from three additional reported mutations in this residue: His214Asp, His214Tyr, and His214Arg. The structure prediction model revealed that PSEN1 protein His214 may interact with Trp215 of His-Trp cation-π interaction, and the mutations of His214 would destroy this interaction. The His-Trp cation-π interaction between His214 and Trp215 would play a crucial structural role in stabilizing the 4th transmembrane domain of PSEN1 protein, especially when aromatic residues were often reported in the membrane interface of the lipid-extracellular region of alpha helices or beta sheets. The His214Asn would alter the cleavage dynamics of gamma-secretase from the disappeared interactions between His214 and Trp215 inside of the helix, resulting in elevated amyloid production. Hence, the increased Aß was reflected in the increased Aß oligomerization tendency and the accumulations of Aß in the brain from amyloid-PET, leading to EOAD.


Asunto(s)
Enfermedad de Alzheimer , Histidina , Humanos , Masculino , Histidina/genética , Triptófano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Presenilina-1/genética , Secretasas de la Proteína Precursora del Amiloide , Mutación , Proteínas Amiloidogénicas , Cationes , República de Corea
10.
Antioxidants (Basel) ; 13(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275629

RESUMEN

Neurodegenerative diseases (NDs) are a large category of progressive neurological disorders with diverse clinical and pathological characteristics. Among the NDs, Alzheimer's disease (AD) is the most widespread disease, which affects more than 400 million people globally. Oxidative stress is evident in the pathophysiology of nearly all NDs by affecting several pathways in neurodegeneration. No single drug can manage multi-faceted diseases like NDs. Therefore, an alternative therapeutic strategy is required, which can affect several pathophysiological pathways at a time. To achieve this aim, hexane and ethyl acetate extract from Trachyspermum ammi (Carom) were prepared, and GC/MS identified the bioactive compounds. For the cell-based assays, oxidative stress was induced in SH-SY5Y neuroblastoma cells using hydrogen peroxide to evaluate the neuroprotective potential of the Carom extracts/bioactives. The extracts/bioactives provided neuroprotection in the cells by modulating multiple pathways involved in neurodegeneration, such as alleviating oxidative stress and mitochondrial membrane potential. They were potent inhibitors of acetylcholine esterase enzymes and displayed competitive/mixed-type inhibition. Additionally, anti-Aß1-42 fibrilization/oligomerization and anti-glycation activities were also analyzed. The multi-faceted neuroprotection shown via Carom/Carvacrol makes it a prospective contender in drug development for NDs.

11.
Mem. Inst. Oswaldo Cruz ; 108(3): 359-367, maio 2013. tab, graf
Artículo en Inglés | LILACS | ID: lil-676973

RESUMEN

Nucleotide sequence analyses of the Pvs48/45 and Pvs47 genes were conducted in 46 malaria patients from the Republic of Korea (ROK) (n = 40) and returning travellers from India (n = 3) and Indonesia (n = 3). The domain structures, which were based on cysteine residue position and secondary protein structure, were similar between Plasmodium vivax (Pvs48/45 and Pvs47) and Plasmodium falciparum (Pfs48/45 and Pfs47). In comparison to the Sal-1 reference strain (Pvs48/45, PVX_083235 and Pvs47, PVX_083240), Korean isolates revealed seven polymorphisms (E35K, H211N, K250N, D335Y, A376T, I380T and K418R) in Pvs48/45. These isolates could be divided into five haplotypes with the two major types having frequencies of 47.5% and 20%, respectivelfy. In Pvs47, 10 polymorphisms (F22L, F24L, K27E, D31N, V230I, M233I, E240D, I262T, I273M and A373V) were found and they could be divided into four haplotypes with one major type having a frequency of 75%. The Pvs48/45 isolates from India showed a unique amino acid substitution site (K26R). Compared to the Sal-1 and ROK isolates, the Pvs47 isolates from travellers returning from India and Indonesia had amino acid substitutions (S57T and I262K). The current data may contribute to the development of the malaria transmission-blocking vaccine in future clinical trials.


Asunto(s)
Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Malaria Vivax/parasitología , Proteínas de la Membrana/genética , Plasmodium vivax/genética , Polimorfismo Genético/genética , ADN Protozoario/genética , India , Indonesia , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , República de Corea , Análisis de Secuencia de ADN , Viaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...