Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Cardiol ; 340: 79-87, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34384839

RESUMEN

OBJECTIVE: The patterns of lncRNA CDKN2B-AS1 in coronary heart disease (CHD) have been extensively studied. This study investigated the competing endogenous RNA (ceRNA) network of CDKN2B-AS1 in coronary atherosclerosis (CAS). METHODS: Microarray analyses were performed to screen out the CHD-related lncRNAs (CDKN2B-AS1) and the downstream microRNAs (miR-126-5p). The expression of CDKN2B-AS1 in serum of patients with CHD and healthy volunteers was detected. Vascular smooth muscle cells (VSMCs) were treated with oxidized low density lipoprotein (ox-LDL) to establish the cell model. Then pcDNA-CDKN2B-AS1 and/or miR-126-5p mimic were transfected into ox-LDL-treated VSMCs to estimate cell proliferation, apoptosis and inflammation. The ceRNA network of CDKN2B-AS1 along with the possible pathway in CHD was testified. RESULTS: CDKN2B-AS1 expression was low in patients with CHD and ox-LDL-treated VSMCs. Upon CDKN2B-AS1 overexpression, TNF-α, NF-κB and IL-1ß levels in VSMCs were decreased, the proliferation of VSMCs was inhibited and the apoptosis rate was increased. Overexpression of miR-126-5p could reverse these trends. CDKN2B-AS1 as a ceRNA competitively bound to miR-126-5p to upregulate PTPN7. CDKN2B-AS1 inhibited VSMC proliferation and accelerated apoptosis by inhibiting the PI3K-Akt pathway. CONCLUSION: LncRNA CDKN2B-AS1 upregulates PTPN7 by absorbing miR-126-5p and inhibits the PI3K-Akt pathway, thus hindering the proliferation and accelerating apoptosis of VSMCs induced by ox-LDL, thus being a therapeutic approach for CAS.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Apoptosis/genética , Proliferación Celular , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Humanos , Lipoproteínas LDL , MicroARNs/genética , Músculo Liso Vascular , Fosfatidilinositol 3-Quinasas , Proteínas Tirosina Fosfatasas no Receptoras , ARN Largo no Codificante/genética
2.
Am J Transl Res ; 11(4): 2317-2327, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105838

RESUMEN

Atherosclerosis is a chronic inflammatory disease inflicting the arterial wall, and endothelial activation and dysfunction play an important role in its pathogenesis. The RNA-binding protein HuR has been associated with events of inflammation and activation in endothelial cells, however, its connection with atherosclerosis remains unclear. Here, we show that the expression and RNA-binding activity of HuR are upregulated in human and mouse atherosclerotic lesions. In addition, proatherogenic stimuli, such as inflammatory lipids (Ox-PAPC) and cytokines (TNF-α and IL-1ß), induce HuR in human aortic endothelial cells (HAECs) in vitro. Moreover, HuR is also induced in mouse aorta ECs fed a high-fat diet, and the inducible degree is correlated with proatherogenic hyperlipidemia. We further show that the MAPK/ErK pathway in ECs is activated by proatherogenic stimuli in vitro and by high-fat diet in vivo. Finally, we demonstrate that the MAPK/ErK pathway is required for HuR induction by proatherogenic stimuli. Altogether, our study uncovers the inducible effect of proatherogenic stimuli on HuR in ECs, and connects this effect to the activated MAPK/ErK pathway.

3.
Exp Ther Med ; 17(1): 960-966, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30651887

RESUMEN

The aim of the present study was to investigate the effects and possible mechanisms of atorvastatin (Ato) against chronic heart failure (CHF). A rat model of CHF was established and cardiac functions were assessed using Echocardiography. The expression of RhoA/Rho kinase and endothelial nitric oxide synthase (eNOS) was assessed using western blotting and reverse transcription polymerase chain reaction following 4 weeks of treatment. The three groups assessed in the present study were as follows: The control group (no treatment), the Ato + isopropylnoradrenaline (ISO) group (subcutaneous injections of 340 mg/kg ISO + orally administered 50 mg/kg Ato dissolved in saline; administered once daily) and the ISO group (subcutaneous injections of 340 mg/kg ISO + orally administered with an equal volume of saline; administered once daily). Heart volume and weight in the ISO group were significantly increased compared with the control (C) group (P<0.01), whereas contractility was decreased. The results were reverse for the Ato group when compared with the ISO group (P<0.05). Levels of RhoA/Rho kinase protein and mRNA were significantly increased in the ISO group (P<0.01); however. The mRNA and protein expression of eNOS was significantly decreased (P<0.05) when compared with the C group. The mRNA and protein expression of RhoA/Rho kinase was significantly reduced in the Ato+ISO group compared with the ISO group (P<0.01), whereas the mRNA and protein expression of eNOS was significantly increased (P<0.05). RhoA protein expression was increased in the cytoplasm of the C group and on the cell membrane of the ISO group; however, in the Ato+ISO group, RhoA protein expression on the cell membrane was significantly downregulated when compared with the ISO group (P<0.05). The results of the present study suggest that Ato upregulates eNOS by inhibiting RhoA/Rho kinase overexpression in the myocardial tissue of rats with CHF, thus improving left ventricular remodeling and cardiac function.

4.
Medicine (Baltimore) ; 96(42): e7741, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29049183

RESUMEN

BACKGROUND: This study aimed to identify key genes associated with acute myocardial infarction (AMI) by reanalyzing microarray data. METHODS: Three gene expression profile datasets GSE66360, GSE34198, and GSE48060 were downloaded from GEO database. After data preprocessing, genes without heterogeneity across different platforms were subjected to differential expression analysis between the AMI group and the control group using metaDE package. P < .05 was used as the cutoff for a differentially expressed gene (DEG). The expression data matrices of DEGs were imported in ReactomeFIViz to construct a gene functional interaction (FI) network. Then, DEGs in each module were subjected to pathway enrichment analysis using DAVID. MiRNAs and transcription factors predicted to regulate target DEGs were identified. Quantitative real-time polymerase chain reaction (RT-PCR) was applied to verify the expression of genes. RESULT: A total of 913 upregulated genes and 1060 downregulated genes were identified in the AMI group. A FI network consists of 21 modules and DEGs in 12 modules were significantly enriched in pathways. The transcription factor-miRNA-gene network contains 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p. RT-PCR validations showed that expression levels of FOXO3 and MYBL2 were significantly increased in AMI, and expression levels of hsa-miR-21-5p and hsa-miR-30c-5p were obviously decreased in AMI. CONCLUSION: A total of 41 DEGs, such as SOCS3, VAPA, and COL5A2, are speculated to have roles in the pathogenesis of AMI; 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p may be involved in the regulation of the expression of these DEGs.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteína Forkhead Box O3/genética , Redes Reguladoras de Genes/genética , Infarto del Miocardio/genética , Transactivadores/genética , Bases de Datos Genéticas , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estudios de Asociación Genética , Humanos , MicroARNs/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética , Regulación hacia Arriba/genética
5.
Gene ; 629: 101-107, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28760552

RESUMEN

OBJECTIVE: Coronary artery disease (CAD) has a high mortality rate and consists of multiple condition, including stable/unstable angina, sudden cardiac death, and myocardial infarction. This study is aimed to explore the pathogenesis of CAD. METHODS: Datasets of GSE20680 (including 87 CAD samples and 52 normal samples) and GSE20681 (including 99 CAD samples and 99 normal samples) were obtained from Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified by MetaDE. Effect Sizes in MetaDE package, and then were hierarchical clustered using pheatmap package in R. Subsequently, CAD-associated microRNAs (miRNAs) and their targets were obtained separately by miR2Disease and miRTarBase databases, and then used to construct an associated-miRNA-DEG regulatory network based on BioGRID, HPRD and DIP databases. Enrichment analysis was conducted for the involved DEGs using Fisher's exact test, and a support vector machine (SVM) classifier was constructed to optimize the feature genes. After CAD-associated long non-coding RNAs (lncRNAs) were predicted by lncRNA Disease database and their target miRNAs were predicted using miRcode and starBase databases, lncRNA-miRNA-DEG regulatory network was constructed. RESULTS: Total 1208 DEGs were screened, and 5 CAD-associated miRNAs (including miR-92a) were predicted associated with CAD. The SVM classifier was constructed based on the 41 featured genes and had high recognition efficiency. Only one lncRNA CDKN2B-AS targeting miR-92a was obtained. Finally, GATA2, MAP1B and ARG1 were involved in the CDKN2B-AS-miR-92a-feature gene regulatory network. CONCLUSION: GATA2, MAP1B and ARG1 indirectly regulated by CDKN2B-AS through miR-92a might be involved in CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Redes Reguladoras de Genes , MicroARNs/genética , ARN Largo no Codificante/metabolismo , Análisis por Conglomerados , Humanos , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...