Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 226, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381229

RESUMEN

Terpenoids are a class of structurally complex, naturally occurring compounds found predominantly in plant, animal, and microorganism secondary metabolites. Classical terpenoids typically have carbon atoms in multiples of five and follow well-defined carbon skeletons, whereas noncanonical terpenoids deviate from these patterns. These noncanonical terpenoids often result from the methyltransferase-catalyzed methylation modification of substrate units, leading to irregular carbon skeletons. In this comprehensive review, various activities and applications of these noncanonical terpenes have been summarized. Importantly, the review delves into the biosynthetic pathways of noncanonical terpenes, including those with C6, C7, C11, C12, and C16 carbon skeletons, in bacteria and fungi host. It also covers noncanonical triterpenes synthesized from non-squalene substrates and nortriterpenes in Ganoderma lucidum, providing detailed examples to elucidate the intricate biosynthetic processes involved. Finally, the review outlines the potential future applications of noncanonical terpenoids. In conclusion, the insights gathered from this review provide a reference for understanding the biosynthesis of these noncanonical terpenes and pave the way for the discovery of additional unique and novel noncanonical terpenes. KEY POINTS: •The activities and applications of noncanonical terpenoids are introduced. •The noncanonical terpenoids with irregular carbon skeletons are presented. •The microbial biosynthesis of noncanonical terpenoids is summarized.


Asunto(s)
Terpenos , Triterpenos , Animales , Carbono , Metiltransferasas , Procesamiento Proteico-Postraduccional
2.
Acta Pharm Sin B ; 13(6): 2795-2806, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37425036

RESUMEN

Metabolic engineering has been widely used for production of natural medicinal molecules. However, engineering high-yield platforms is hindered in large part by limited knowledge of complex regulatory machinery of metabolic network. N6-Methyladenosine (m6A) modification of RNA plays critical roles in regulation of gene expression. Herein, we identify 1470 putatively m6A peaks within 1151 genes from the haploid Saccharomyces cerevisiae strain. Among them, the transcript levels of 94 genes falling into the pathways which are frequently optimized for chemical production, are remarkably altered upon overexpression of IME4 (the yeast m6A methyltransferase). In particular, IME4 overexpression elevates the mRNA levels of the methylated genes in the glycolysis, acetyl-CoA synthesis and shikimate/aromatic amino acid synthesis modules. Furthermore, ACS1 and ADH2, two key genes responsible for acetyl-CoA synthesis, are induced by IME4 overexpression in a transcription factor-mediated manner. Finally, we show IME4 overexpression can significantly increase the titers of isoprenoids and aromatic compounds. Manipulation of m6A therefore adds a new layer of metabolic regulatory machinery and may be broadly used in bioproduction of various medicinal molecules of terpenoid and phenol classes.

3.
Appl Microbiol Biotechnol ; 107(11): 3391-3404, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37126085

RESUMEN

Rare ginsenosides are the deglycosylated secondary metabolic derivatives of major ginsenosides, and they are more readily absorbed into the bloodstream and function as active substances. The traditional preparation methods hindered the potential application of these effective components. The continuous elucidation of ginsenoside biosynthesis pathways has rendered the production of rare ginsenosides using synthetic biology techniques effective for their large-scale production. Previously, only the progress in the biosynthesis and biotechnological production of major ginsenosides was highlighted. In this review, we summarized the recent advances in the identification of key enzymes involved in the biosynthetic pathways of rare ginsenosides, especially the glycosyltransferases (GTs). Then the construction of microbial chassis for the production of rare ginsenosides, mainly in Saccharomyces cerevisiae, was presented. In the future, discovery of more GTs and improving their catalytic efficiencies are essential for the metabolic engineering of rare ginsenosides. This review will give more clues and be helpful for the characterization of the biosynthesis and metabolic engineering of rare ginsenosides. KEY POINTS: • The key enzymes involved in the biosynthetic pathways of rare ginsenosides are summarized. • The recent progress in metabolic engineering of rare ginsenosides is presented. • The discovery of glycosyltransferases is essential for the microbial production of rare ginsenosides in the future.


Asunto(s)
Ginsenósidos , Panax , Ingeniería Metabólica , Ginsenósidos/metabolismo , Panax/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo
4.
Microb Cell Fact ; 22(1): 76, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085866

RESUMEN

Central carbon metabolism (CCM), including glycolysis, tricarboxylic acid cycle and the pentose phosphate pathway, is the most fundamental metabolic process in the activities of living organisms that maintains normal cellular growth. CCM has been widely used in microbial metabolic engineering in recent years due to its unique regulatory role in cellular metabolism. Using yeast and Escherichia coli as the representative organisms, we summarized the metabolic engineering strategies on the optimization of CCM in eukaryotic and prokaryotic microbial chassis, such as the introduction of heterologous CCM metabolic pathways and the optimization of key enzymes or regulatory factors, to lay the groundwork for the future use of CCM optimization in metabolic engineering. Furthermore, the bottlenecks in the application of CCM optimization in metabolic engineering and future application prospects are summarized.


Asunto(s)
Carbono , Ingeniería Metabólica , Carbono/metabolismo , Redes y Vías Metabólicas , Vía de Pentosa Fosfato , Ciclo del Ácido Cítrico , Escherichia coli/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
Neuropharmacology ; 214: 109154, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35659969

RESUMEN

Neuronal dendrites and dendritic spines are essential for normal synaptic transmission and may be critically involved in the pathophysiology of various neurological disorders, including depression. Emerging data supports the role of mitochondria in dendritic protrusions in modulating the development and morphological plasticity of spines. Mitophagy, a mitochondria-specific form of autophagy, is the fundamental process of clearing damaged mitochondria to maintain cellular homeostasis. As a brain-specific microRNA, miR-134 is localized to the synaptodendritic compartment of hippocampal neurons and negatively regulates the development of dendritic spines. However, the role of miR-134 in mitophagy related to dendritic deficits in the pathophysiology of depression remains unclear. In this study, we showed that miR-134-5p knockdown abrogated depression-like behavioral symptoms and corrected aberrant spine morphology in hippocampal neurons of chronic unpredictable mild stress (CUMS) mice. Moreover, knockdown of miR-134-5p triggered autophagy in dendrites, improved mitochondrial impairment, and induced the generation of autophagosomes in the hippocampus of CUMS mice. We further found that AMP-activated protein kinase (AMPK), which mediates the impairment of defective mitochondria via mitophagy, can bind directly to miR-134-5p and is negatively regulated by this miRNA. This study demonstrates that miR-134-5p exerts an enormous effect on dendritic deficits by promoting AMPK-mediated mitophagy and provides a potential new target for antidepressant drug research and development.


Asunto(s)
MicroARNs , Mitofagia , Proteínas Quinasas Activadas por AMP , Animales , Depresión/genética , Depresión/metabolismo , Modelos Animales de Enfermedad , Ratones , MicroARNs/genética , MicroARNs/metabolismo
6.
J Ginseng Res ; 46(3): 376-386, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600767

RESUMEN

Background: Brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) plays a critical role in the pathogenesis of depression by modulating synaptic structural remodeling and functional transmission. Previously, we have demonstrated that the ginsenoside Rb1 (Rb1) presents a novel antidepressant-like effect via BDNF-TrkB signaling in the hippocampus of chronic unpredictable mild stress (CUMS)-exposed mice. However, the underlying mechanism through which Rb1 counteracts stress-induced aberrant hippocampal synaptic plasticity via BDNF-TrkB signaling remains elusive. Methods: We focused on hippocampal microRNAs (miRNAs) that could directly bind to BDNF and are regulated by Rb1 to explore the possible synaptic plasticity-dependent mechanism of Rb1, which affords protection against CUMS-induced depression-like effects. Results: Herein, we observed that brain-specific miRNA-134 (miR-134) could directly bind to BDNF 3'UTR and was markedly downregulated by Rb1 in the hippocampus of CUMS-exposed mice. Furthermore, the hippocampus-targeted miR-134 overexpression substantially blocked the antidepressant-like effects of Rb1 during behavioral tests, attenuating the effects on neuronal nuclei-immunoreactive neurons, the density of dendritic spines, synaptic ultrastructure, long-term potentiation, and expression of synapse-associated proteins and BDNF-TrkB signaling proteins in the hippocampus of CUMS-exposed mice. Conclusion: These data provide strong evidence that Rb1 rescued CUMS-induced depression-like effects by modulating hippocampal synaptic plasticity via the miR-134-mediated BDNF signaling pathway.

7.
Front Genet ; 13: 828877, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480310

RESUMEN

Bufo bufo gargarizans Cantor are precious medicinal animals in traditional Chinese medicine (TCM). Bufadienolides as the major pharmacological components are generated from the venomous glands of B. bufo gargarizans. Bufadienolides are one type of cardiac aglycone with a six-member lactone ring and have properties of antitumor, cardiotonic, tonsillitis, and anti-inflammatory. The biosynthesis of bufadienolides is complex and unclear. This study explored the transcriptome of three different tissues (skin glands, venom glands, and muscles) of B. bufo gargarizans by high-throughput sequencing. According to the gene tissue-specific expression profile, 389 candidate genes were predicted possibly participating in the bufadienolides biosynthesis pathway. Then, BbgCYP11A1 was identified as a cholesterol side chain cleaving the enzyme in engineering yeast producing cholesterol. Furthermore, the catalytic activity of BbgCYP11A1 was studied with various redox partners. Interestingly, a plant NADPH-cytochrome P450 reductase (CPR) from Anemarrhena asphodeloides showed notably higher production than BbgAdx-2A-BbgAdR from B. bufo gargarizans. These results will provide certainly molecular research to reveal the bufadienolides biosynthesis pathway in B. bufo gargarizans.

8.
J Nat Prod ; 84(10): 2709-2716, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34644092

RESUMEN

Characterization of cryptic biosynthetic gene clusters (BGCs) from microbial genomes has been proven to be a powerful approach to the discovery of new natural products. However, such a genome mining approach to the discovery of bioactive plant metabolites has been muted. The plant BGCs characterized to date encode pathways for antibiotics important in plant defense against microbial pathogens, providing a means to discover such phytoalexins by mining plant genomes. Here is reported the discovery and characterization of a minimal BGC from the medicinal plant Catharanthus roseus, consisting of an adjacent pair of genes encoding a terpene synthase (CrTPS18) and cytochrome P450 (CYP71D349). These two enzymes act sequentially, with CrTPS18 acting as a sesquiterpene synthase, producing 5-epi-jinkoheremol (1), which CYP71D349 further hydroxylates to debneyol (2). Infection studies with maize revealed that 1 and 2 exhibit more potent fungicidal activity than validamycin. Accordingly, this study demonstrates that characterization of such cryptic plant BGCs is a promising strategy for the discovery of potential agrochemical leads. Moreover, despite the observed absence of 1 and 2 in C. roseus, the observed transcriptional regulation is consistent with their differential fungicidal activity, suggesting that such conditional coexpression may be sufficient to drive BGC assembly in plants.


Asunto(s)
Catharanthus/genética , Fungicidas Industriales/química , Familia de Multigenes , Sesquiterpenos/química , Transferasas Alquil y Aril/genética , Catharanthus/química , Sistema Enzimático del Citocromo P-450/genética , Genoma de Planta , Enfermedades de las Plantas/prevención & control , Plantas Medicinales/química , Plantas Medicinales/genética , Zea mays/microbiología , Fitoalexinas
9.
Appl Microbiol Biotechnol ; 104(8): 3339-3348, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32112133

RESUMEN

Betulinic acid (BA), a lupane-type triterpenoid, mainly distributes in birch plants. It has been reported that BA and its derivatives possess potent anticancer and anti-HIV activities. Commercial production of BA to date depends on phytochemical extraction and semi-synthesis from betulin (a biosynthetic precursor of BA). The biosynthetic pathway of BA has been completely revealed so far. The relevant enzymes involved in BA biosynthesis are summarized in this review. The studies on construction of biotechnological platforms for production of BA and other related triterpenoids are subsequently reviewed. The engineering strategies include overexpression of rate-limiting enzymes of triterpenoid biosynthesis, balancing flux between triterpenoid biosynthetic pathway and others, engineering endoplasmic reticulum, and improving cofactor availability. At the end, this review also attempted to provide future perspectives on potential strategies for further optimizing biosynthesis of BA and other triterpenoids in microbial hosts. KEY POINTS: • Summarizes the relevant enzymes involved in betulinic acid (BA) biosynthesis. • Highlights recent advances in biotechnological production of BA-related compounds. • Provides future perspectives on strategies for optimizing triterpenoid biosynthesis.


Asunto(s)
Vías Biosintéticas , Biotecnología/métodos , Triterpenos Pentacíclicos/metabolismo , Plantas/enzimología , Fármacos Anti-VIH/metabolismo , Antineoplásicos/metabolismo , Ingeniería Metabólica/métodos , Triterpenos/metabolismo , Ácido Betulínico
10.
J Agric Food Chem ; 68(10): 3214-3219, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32079394

RESUMEN

Four terpene synthases for the biosynthesis of volatile terpenoids were identified from the transcriptome of Stellera chamaejasme L. flowers, including SchTPS1, SchTPS2, SchTPS3, and SchTPS4. Their functions were characterized by synthetic biology approaches in Escherichia coli and in vitro enzymatic assays. SchTPS1, SchTPS2, and SchTPS3 are guaiene synthases, while SchTPS4 is an (E,E)-geranyl linalool synthase. Next, SchTPS1 and α-guaiene 2-oxidase VvSTO2 were co-expressed in Saccharomyces cerevisiae to reconstruct the biosynthetic pathway of (-)-rotundone, which is a unique aroma compound in fruits, vegetables, and wines. This is the first report for the construction of a (-)-rotundone-producing microbial platform.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Azulenos/metabolismo , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos de Guayano/metabolismo , Sesquiterpenos/metabolismo , Thymelaeaceae/enzimología , Transferasas Alquil y Aril/genética , Vías Biosintéticas , Flores/enzimología , Flores/genética , Expresión Génica , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Thymelaeaceae/genética
11.
ACS Synth Biol ; 9(2): 449-456, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31940436

RESUMEN

Sandalwood oil has been widely used in perfumery industries and aromatherapy. Santalols are its major components. Herein, we attempted to construct santalol-producing yeasts. To alter flux from predominant triterpenoid/steroid biosynthesis to sesquiterpenoid production, expression of ERG9 (encoding yeast squalene synthase) was depressed by replacing its innate promotor with PHXT1 and fermenting the resulting strains in galactose-rich media. And the genes related to santalol biosynthesis were overexpressed under control of GAL promotors, which linked santalol biosynthesis to GAL regulatory system. GAL4 (a transcriptional activator of GAL promotors) and PGM2 (a yeast phosphoglucomutase) were overexpressed to overall promote this artificial santalol biosynthetic pathway and enhance galactose uptake. 1.3 g/L santalols and 1.2 g/L Z-α-santalol were achieved in the strain WL17 expressing SaSS (α-santalene synthase from Santalum album) and WL19 expressing SanSyn (α-santalene synthase from Clausena lansium) by fed-batch fermentation, respectively. This study constructed the microbial santalol-producing platform for the first time.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Sesquiterpenos Policíclicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Técnicas de Cultivo Celular por Lotes , Clausena/enzimología , Proteínas de Unión al ADN/genética , Farnesil Difosfato Farnesil Transferasa/genética , Farnesil Difosfato Farnesil Transferasa/metabolismo , Galactosa/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Fosfoglucomutasa/genética , Fosfoglucomutasa/metabolismo , Sesquiterpenos Policíclicos/análisis , Sesquiterpenos Policíclicos/química , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Santalum/enzimología , Factores de Transcripción/genética
12.
Appl Microbiol Biotechnol ; 103(17): 7029-7039, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31309269

RESUMEN

Betulinic acid (BA) and its derivatives possess potent pharmacological activity against cancer and HIV. As with many phytochemicals, access to BA is limited by the requirement for laborious extraction from plant biomass where it is found in low amounts. This might be alleviated by metabolically engineering production of BA into an industrially relevant microbe such as Saccharomyces cerevisiae (yeast), which requires complete elucidation of the corresponding biosynthetic pathway. However, while cytochrome P450 enzymes (CYPs) that can oxidize lupeol into BA have been previously identified from the CYP716A subfamily, these generally do not seem to be specific to such biosynthesis and, in any case, have not been shown to enable high-yielding metabolic engineering. Here RoCYP01 (CYP716A155) was identified from the BA-producing plant Rosmarinus officinalis (rosemary) and demonstrated to effectively convert lupeol into BA, with strong correlation of its expression and BA accumulation. This was further utilized to construct a yeast strain that yields > 1 g/L of BA, providing a viable route for biotechnological production of this valuable triterpenoid.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Rosmarinus/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Triterpenos/metabolismo , Clonación Molecular , Sistema Enzimático del Citocromo P-450/clasificación , Sistema Enzimático del Citocromo P-450/genética , Bases de Datos Genéticas , Expresión Génica , Triterpenos Pentacíclicos/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rosmarinus/genética , Rosmarinus/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Ácido Betulínico
13.
Sci Rep ; 6: 25510, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27138687

RESUMEN

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most destructive diseases and can cause severe yield losses in many regions of the world. Because of the large size and complexity of wheat genome, it is difficult to study the molecular mechanism of interaction between wheat and PST. Brachypodium distachyon has become a model system for temperate grasses' functional genomics research. The phenotypic evaluation showed that the response of Brachypodium distachyon to PST was nonhost resistance (NHR), which allowed us to present this plant-pathogen system as a model to explore the immune response and the molecular mechanism underlying wheat and PST. Here we reported the generation of about 7,000 T-DNA insertion lines based on a highly efficient Agrobacterium-mediated transformation system. Hundreds of mutants either more susceptible or more resistant to PST than that of the wild type Bd21 were obtained. The three putative target genes, Bradi5g17540, BdMYB102 and Bradi5g11590, of three T-DNA insertion mutants could be involved in NHR of Brachypodium distachyon to wheat stripe rust. The systemic pathologic study of this T-DNA mutants would broaden our knowledge of NHR, and assist in breeding wheat cultivars with durable resistance.


Asunto(s)
Brachypodium/genética , ADN Bacteriano/genética , Interacciones Huésped-Patógeno/genética , Triticum/genética , Agrobacterium tumefaciens/genética , Basidiomycota/genética , Basidiomycota/patogenicidad , Brachypodium/microbiología , Cruzamiento , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA