Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260579

RESUMEN

Long interspersed element type 1 (LINE-1, L1) is an active autonomous transposable element (TE) in the human genome. The first step of L1 replication is transcription, which is controlled by an internal RNA polymerase II promoter in the 5' untranslated region (UTR) of a full-length L1. It has been shown that transcription factor YY1 binds to a conserved sequence motif at the 5' end of the human L1 5'UTR and dictates where transcription initiates but not the level of transcription. Putative YY1-binding motifs have been predicted in the 5'UTRs of two distinct mouse L1 subfamilies, Tf and Gf. Using site-directed mutagenesis, in vitro binding, and gene knockdown assays, we experimentally tested the role of YY1 in mouse L1 transcription. Our results indicate that Tf, but not Gf subfamily, harbors functional YY1-binding sites in its 5'UTR monomers. In contrast to its role in human L1, YY1 functions as a transcriptional activator for the mouse Tf subfamily. Furthermore, YY1-binding motifs are solely responsible for the synergistic interaction between monomers, consistent with a model wherein distant monomers act as enhancers for mouse L1 transcription. The abundance of YY1-binding sites in Tf elements also raise important implications for gene regulation at the genomic level.

2.
Mob DNA ; 13(1): 13, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443687

RESUMEN

BACKGROUND: The internal promoter in L1 5'UTR is critical for autonomous L1 transcription and initiating retrotransposition. Unlike the human genome, which features one contemporarily active subfamily, four subfamilies (A_I, Gf_I and Tf_I/II) have been amplifying in the mouse genome in the last one million years. Moreover, mouse L1 5'UTRs are organized into tandem repeats called monomers, which are separated from ORF1 by a tether domain. In this study, we aim to compare promoter activities across young mouse L1 subfamilies and investigate the contribution of individual monomers and the tether sequence. RESULTS: We observed an inverse relationship between subfamily age and the average number of monomers among evolutionarily young mouse L1 subfamilies. The youngest subgroup (A_I and Tf_I/II) on average carry 3-4 monomers in the 5'UTR. Using a single-vector dual-luciferase reporter assay, we compared promoter activities across six L1 subfamilies (A_I/II, Gf_I and Tf_I/II/III) and established their antisense promoter activities in a mouse embryonic fibroblast cell line and a mouse embryonal carcinoma cell line. Using consensus promoter sequences for three subfamilies (A_I, Gf_I and Tf_I), we dissected the differential roles of individual monomers and the tether domain in L1 promoter activity. We validated that, across multiple subfamilies, the second monomer consistently enhances the overall promoter activity. For individual promoter components, monomer 2 is consistently more active than the corresponding monomer 1 and/or the tether for each subfamily. Importantly, we revealed intricate interactions between monomer 2, monomer 1 and tether domains in a subfamily-specific manner. Furthermore, using three-monomer 5'UTRs, we established a complex nonlinear relationship between the length of the outmost monomer and the overall promoter activity. CONCLUSIONS: The laboratory mouse is an important mammalian model system for human diseases as well as L1 biology. Our study extends previous findings and represents an important step toward a better understanding of the molecular mechanism controlling mouse L1 transcription as well as L1's impact on development and disease.

3.
Nat Genet ; 53(5): 672-682, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33833453

RESUMEN

Transposable elements or transposons are major players in genetic variability and genome evolution. Aberrant activation of long interspersed element-1 (LINE-1 or L1) retrotransposons is common in human cancers, yet their tumor-type-specific functions are poorly characterized. We identified MPHOSPH8/MPP8, a component of the human silencing hub (HUSH) complex, as an acute myeloid leukemia (AML)-selective dependency by epigenetic regulator-focused CRISPR screening. Although MPP8 is dispensable for steady-state hematopoiesis, MPP8 loss inhibits AML development by reactivating L1s to induce the DNA damage response and cell cycle exit. Activation of endogenous or ectopic L1s mimics the phenotype of MPP8 loss, whereas blocking retrotransposition abrogates MPP8-deficiency-induced phenotypes. Expression of AML oncogenic mutations promotes L1 suppression, and enhanced L1 silencing is associated with poor prognosis in human AML. Hence, while retrotransposons are commonly recognized for their cancer-promoting functions, we describe a tumor-suppressive role for L1 retrotransposons in myeloid leukemia.


Asunto(s)
Silenciador del Gen , Leucemia Mieloide/genética , Elementos de Nucleótido Esparcido Largo/genética , Animales , Sistemas CRISPR-Cas/genética , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Genoma Humano , Inestabilidad Genómica , Hematopoyesis/genética , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/genética
4.
Anal Biochem ; 601: 113779, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32442414

RESUMEN

Long interspersed element type 1 (LINE-1; L1) mobilizes during early embryogenesis, neurogenesis, and germ cell development, accounting for 25% of disease-causing heritable insertions and 98% of somatic insertions in cancer. To better understand the regulation and impact of L1 mobilization in the genome, reliable methods for measuring L1 copy number variation (CNV) are needed. Here we present a comprehensive analysis of a droplet digital PCR (ddPCR) based method for quantifying endogenous mouse L1. We provide experimental evidence that ddPCR assays can be designed to target specific L1 subfamilies using diagnostic single nucleotide polymorphisms (SNPs). The target and off-target L1 subfamilies form distinct droplet clusters, which were experimentally verified using both synthetic gene fragments and endogenous L1 derived plasmid clones. We further provide a roadmap for in silico assay design and evaluation of target specificity, ddPCR testing, and optimization for L1 CNV quantification. The assay can achieve a sensitivity of 5% CNV with 8 technical replicates. With 24 technical replicates, it can detect 2% CNV because of the increased precision. The same approach will serve as a guide for the development of ddPCR based assays for quantifying human L1 copy number and any other high copy genomic target sequences.


Asunto(s)
Elementos de Nucleótido Esparcido Largo/genética , Reacción en Cadena de la Polimerasa , Animales , Ratones
5.
Virology ; 545: 16-23, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32174455

RESUMEN

Influenza D virus (IDV) utilizes bovines as a primary reservoir with periodical spillover to other mammalian hosts. By using traditional hemagglutination assay coupled with sialoglycan microarray (SGM) platform and functional assays, we demonstrated that IDV is more efficient in recognizing both 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac) than influenza C virus (ICV), a ubiquitous human pathogen. ICV seems to strongly prefer Neu5,9Ac2 over Neu5Gc9Ac. Since Neu5Gc9Ac is different from Neu5,9Ac2 only by an additional oxygen in the group at the C5 position, our results reveal that the hydroxyl group in Neu5Gc9Ac plays a critical role in determining receptor binding specificity, which as a result may discriminate IDV from ICV in communicating with 9-O-acetylated SAs. These findings shall provide a framework for further investigation towards better understanding of how newly discovered multiple-species-infecting IDV exploits natural 9-O-acetylated SA variations to expand its host range.


Asunto(s)
Gammainfluenzavirus/metabolismo , Gripe Humana/metabolismo , Polisacáridos/metabolismo , Receptores Virales/metabolismo , Thogotovirus/metabolismo , Humanos , Gripe Humana/virología , Gammainfluenzavirus/genética , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/química , Receptores Virales/química , Ácidos Siálicos/metabolismo , Thogotovirus/clasificación , Thogotovirus/genética , Thogotovirus/aislamiento & purificación
9.
Nucleic Acids Res ; 47(15): 7870-7885, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31226208

RESUMEN

Long interspersed elements-1 (LINE-1, L1) are retrotransposons that hold the capacity of self-propagation in the genome with potential mutagenic outcomes. How somatic cells restrict L1 activity and how this process becomes dysfunctional during aging and in cancer cells is poorly understood. L1s are enriched at lamin-associated domains, heterochromatic regions of the nuclear periphery. Whether this association is necessary for their repression has been elusive. Here we show that the sirtuin family member SIRT7 participates in the epigenetic transcriptional repression of L1 genome-wide in both mouse and human cells. SIRT7 depletion leads to increased L1 expression and retrotransposition. Mechanistically, we identify a novel interplay between SIRT7 and Lamin A/C in L1 repression. Our results demonstrate that SIRT7-mediated H3K18 deacetylation regulates L1 expression and promotes L1 association with elements of the nuclear lamina. The failure of such activity might contribute to the observed genome instability and compromised viability in SIRT7 knockout mice. Overall, our results reveal a novel function of SIRT7 on chromatin organization by mediating the anchoring of L1 to the nuclear envelope, and a new functional link of the nuclear lamina with transcriptional repression.


Asunto(s)
Genoma , Lamina Tipo A/genética , Elementos de Nucleótido Esparcido Largo , Sirtuinas/genética , Transcripción Genética , Animales , Línea Celular , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Epigénesis Genética , Fibroblastos/citología , Fibroblastos/metabolismo , Heterocromatina/química , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Células K562 , Lamina Tipo A/metabolismo , Hígado/citología , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Miocardio/citología , Miocardio/metabolismo , Lámina Nuclear/metabolismo , Lámina Nuclear/ultraestructura , Sirtuinas/deficiencia , Sirtuinas/metabolismo , Testículo/citología , Testículo/metabolismo
10.
Mob DNA ; 10: 17, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31073336

RESUMEN

BACKGROUND: Transposable elements (TEs) make up > 50% of the human genome, and the majority of retrotransposon insertions are truncated and many are located in introns. However, the effects of retrotransposition on the host genes remain incompletely known. RESULTS: We report here that insertion of a chimeric L1 (cL1), but not IAP solo LTR, into intron 6 of Axin1 using CRIPSR/Cas9 induced the kinky tail phenotype with ~ 80% penetrance in heterozygous Axin cL1 mice. Both penetrant (with kinky tails) and silent (without kinky tails) Axin cL1 mice, regardless of sex, could transmit the phenotype to subsequent generations with similar penetrance (~ 80%). Further analyses revealed that a longer Axin1 transcript isoform containing partial cL1-targeted intron was present in penetrant, but absent in silent and wild type mice, and the production of this unique Axin1 transcript appeared to correlate with altered levels of an activating histone modification, H3K9ac. CONCLUSIONS: The mechanism for Axin cL1 mice is different from those previously identified in mice with spontaneous retrotransposition of IAP, e.g., Axin Fu and A vy , both of which have been associated with DNA methylation changes. Our data suggest that Axin1 locus is sensitive to genetic and epigenetic alteration by retrotransposons and thus, ideally suited for studying the effects of new retrotransposition events on target gene function in mice.

11.
Development ; 146(12)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30658985

RESUMEN

Epigenetic resetting in germ cells during development de-represses transposable elements (TEs). piRNAs protect fetal germ cells by targeted mRNA destruction and deposition of repressive epigenetic marks. Here, we provide the first evidence for an active piRNA pathway and TE repression in germ cells of human fetal testis. We identify pre-pachytene piRNAs with features of secondary amplification that map most abundantly to the long interspersed element type 1 (L1) family of TEs. L1-ORF1p expression is heterogeneous in fetal germ cells, peaks at mid-gestation and declines concomitantly with increases in piRNAs, nuclear localization of HIWI2 and an increase in H3K9me3. Surprisingly, the same cells with accumulation of L1-ORF1p display highest levels of HIWI2 and H3K9me3. Conversely, the earliest germ cells with high levels of L1-ORF1p express low levels of the chaperone HSP90α. We propose that a subset of germ cells resists L1 expression, whereas L1-expressing germ cells activate the repression pathway that leads to epigenetic silencing of L1 via H3K9me3.


Asunto(s)
Elementos Transponibles de ADN , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , ARN Interferente Pequeño/genética , Testículo/embriología , Animales , Proteínas Argonautas/metabolismo , Núcleo Celular/metabolismo , Análisis por Conglomerados , Epigénesis Genética , Perfilación de la Expresión Génica , Silenciador del Gen , Proteínas HSP90 de Choque Térmico/metabolismo , Xenoinjertos , Histonas/metabolismo , Homocigoto , Humanos , Masculino , Ratones , Chaperonas Moleculares , Proteínas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Análisis de la Célula Individual , Testículo/trasplante
12.
Nucleic Acids Res ; 46(16): 8454-8470, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30085096

RESUMEN

Long interspersed element-1 (LINE-1, L1) composes ∼17% of the human genome. However, genetic interactions between L1 and human immunodeficiency virus type 1 (HIV-1) remain poorly understood. In this study, we found that HIV-1 suppresses L1 retrotransposition. Notably, HIV-1 Vpr strongly inhibited retrotransposition without inhibiting L1 promoter activity. Since Vpr is known to regulate host cell cycle, we examined the possibility whether Vpr suppresses L1 retrotransposition in a cell cycle dependent manner. We showed that the inhibitory effect of a mutant Vpr (H71R), which is unable to arrest the cell cycle, was significantly relieved compared with that of wild-type Vpr, suggesting that Vpr suppresses L1 mobility in a cell cycle dependent manner. Furthermore, a host cell cycle regulator p21Waf1 strongly suppressed L1 retrotransposition. The N-terminal kinase inhibitory domain (KID) of p21 was required for this inhibitory effect. Another KID-containing host cell cycle regulator p27Kip1 also strongly suppressed L1 retrotransposition. We showed that Vpr and p21 coimmunoprecipitated with L1 ORF2p and they suppressed the L1 reverse transcriptase activity in LEAP assay, suggesting that Vpr and p21 inhibit ORF2p-mediated reverse transcription. Altogether, our results suggest that viral and host cell cycle regulatory machinery limit L1 mobility in cultured cells.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , VIH-1/fisiología , Elementos de Nucleótido Esparcido Largo/genética , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/fisiología , Ciclo Celular , Línea Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Endonucleasas/metabolismo , Genes Reporteros , Genes prv , VIH-1/genética , Humanos , Dominios Proteicos , Proteínas/metabolismo , Interferencia de ARN , ADN Polimerasa Dirigida por ARN/metabolismo , Transcripción Genética , Virión/metabolismo
13.
J Gen Virol ; 99(4): 475-488, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29458654

RESUMEN

Influenza B virus (FLUBV) is an important pathogen that infects humans and causes seasonal influenza epidemics. To date, little is known about defective genomes of FLUBV and their roles in viral replication. In this study, by using a next-generation sequencing approach, we analyzed total mRNAs extracted from A549 cells infected with B/Brisbane/60/2008 virus (Victoria lineage), and identified four defective FLUBV genomes with two (PB1∆A and PB1∆B) from the polymerase basic subunit 1 (PB1) segment and the other two (M∆A and M∆B) from the matrix (M) protein-encoding segment. These defective genomes contained significant deletions in the central regions with each having the potential for encoding a novel polypeptide. Significantly, each of the discovered defective RNAs can potently inhibit the replication of B/Yamanashi/166/98 (Yamagata lineage). Furthermore, PB1∆A was able to interfere modestly with influenza A virus (FLUAV) replication. In summary, our study provides important initial insights into FLUBV defective-interfering genomes, which can be further explored to achieve better understanding of the replication, pathogenesis and evolution of FLUBV.


Asunto(s)
Virus Defectuosos/genética , Virus de la Influenza B/genética , Gripe Humana/virología , ARN Viral/genética , Células A549 , Virus Defectuosos/fisiología , Genoma Viral , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Proteínas Virales/genética , Replicación Viral
14.
Proc Natl Acad Sci U S A ; 114(28): E5635-E5644, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28630288

RESUMEN

The PIWI-interacting RNA (piRNA) pathway is essential for retrotransposon silencing. In piRNA-deficient mice, L1-overexpressing male germ cells exhibit excessive DNA damage and meiotic defects. It remains unknown whether L1 expression simply highlights piRNA deficiency or actually drives the germ-cell demise. Specifically, the sheer abundance of genomic L1 copies prevents reliable quantification of new insertions. Here, we developed a codon-optimized L1 transgene that is controlled by an endogenous mouse L1 promoter. Importantly, DNA methylation dynamics of a single-copy transgene were indistinguishable from those of endogenous L1s. Analysis of Mov10l1-/- testes established that de novo methylation of the L1 transgene required the intact piRNA pathway. Consistent with loss of DNA methylation and programmed reduction of H3K9me2 at meiotic onset, the transgene showed 1,400-fold increase in RNA expression and consequently 70-fold increase in retrotransposition in postnatal day 14 Mov10l1-/- germ cells compared with the wild-type. Analysis of adult Mov10l1-/- germ-cell fractions indicated a stage-specific increase of retrotransposition in the early meiotic prophase. However, extrapolation of the transgene data to endogenous L1s suggests that it is unlikely insertional mutagenesis alone accounts for the Mov10l1-/- phenotype. Indeed, pharmacological inhibition of reverse transcription did not rescue the meiotic defect. Cumulatively, these results establish the occurrence of productive L1 mobilization in the absence of an intact piRNA pathway but leave open the possibility of processes preceding L1 integration in triggering meiotic checkpoints and germ-cell death. Additionally, our data suggest that many heritable L1 insertions originate from individuals with partially compromised piRNA defense.


Asunto(s)
Meiosis , ARN Interferente Pequeño/metabolismo , Retroelementos , Transgenes , Regiones no Traducidas 5' , Animales , Codón , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Masculino , Metilación , Ratones , Ratones Transgénicos , Sistemas de Lectura Abierta , Fenotipo , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Espermatocitos/metabolismo , Espermatogénesis , Testículo/metabolismo
15.
Mob DNA ; 8: 8, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28491150

RESUMEN

BACKGROUND: The ongoing mobilization of mammalian transposable elements (TEs) contributes to natural genetic variation. To survey the epigenetic control and expression of reporter genes inserted by L1 retrotransposition in diverse cellular and genomic contexts, we engineered highly sensitive, real-time L1 retrotransposon reporter constructs. RESULTS: Here we describe different patterns of expression and epigenetic controls of newly inserted sequences retrotransposed by L1 in various somatic cells and tissues including cultured human cancer cells, mouse embryonic stem cells, and tissues of pseudofounder transgenic mice and their progeny. In cancer cell lines, the newly inserted sequences typically underwent rapid transcriptional gene silencing, but they lacked cytosine methylation even after many cell divisions. L1 reporter expression was reversible and oscillated frequently. Silenced or variegated reporter expression was strongly and uniformly reactivated by treatment with inhibitors of histone deacetylation, revealing the mechanism for their silencing. By contrast, de novo integrants retrotransposed by L1 in pluripotent mouse embryonic stem (ES) cells underwent rapid silencing by dense cytosine methylation. Similarly, de novo cytosine methylation also was identified at new integrants when studied in several distinct somatic tissues of adult founder mice. Pre-existing L1 elements in cultured human cancer cells were stably silenced by dense cytosine methylation, whereas their transcription modestly increased when cytosine methylation was experimentally reduced in cells lacking DNA methyltransferases DNMT1 and DNMT3b. As a control, reporter genes mobilized by piggyBac (PB), a DNA transposon, revealed relatively stable and robust expression without apparent silencing in both cultured cancer cells and ES cells. CONCLUSIONS: We hypothesize that the de novo methylation marks at newly inserted sequences retrotransposed by L1 in early pre-implantation development are maintained or re-established in adult somatic tissues. By contrast, histone deacetylation reversibly silences L1 reporter insertions that had mobilized at later timepoints in somatic development and differentiation, e.g., in cancer cell lines. We conclude that the cellular contexts of L1 retrotransposition can determine expression or silencing of newly integrated sequences. We propose a model whereby reporter expression from somatic TE insertions reflects the timing, molecular mechanism, epigenetic controls and the genomic, cellular and developmental contexts of their integration.

16.
J Mol Biol ; 428(11): 2275-2288, 2016 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-27075671

RESUMEN

A key contributor to HIV-1 genetic variation is reverse transcriptase errors. Some mutations result because reverse transcriptase (RT) lacks 3' to 5' proofreading exonuclease and can extend mismatches. However, RT also excises terminal nucleotides to a limited extent, and this activity contributes to AZT resistance. Because HIV-1 mismatch resolution has been studied in vitro but only indirectly during replication, we developed a novel system to study mismatched base pair resolution during HIV-1 replication in cultured cells using vectors that force template switching at defined locations. These vectors generated mismatched reverse transcription intermediates, with proviral products diagnostic of mismatch resolution mechanisms. Outcomes for wild-type (WT) RT and an AZT-resistant (AZT(R)) RT containing a thymidine analog mutation set-D67N, K70R, D215F, and K219Q-were compared. AZT(R) RT did not excise terminal nucleotides more frequently than WT, and for the majority of tested mismatches, both WT and AZT(R) RTs extended mismatches in more than 90% of proviruses. However, striking enzyme-specific differences were observed for one mispair, with WT RT preferentially resolving dC-rC pairs either by excising the mismatched base or switching templates prematurely, while AZT(R) RT primarily misaligned the primer strand, causing deletions via dislocation mutagenesis. Overall, the results confirmed HIV-1 RT's high capacity for mismatch extension during virus replication and revealed dramatic differences in aberrant intermediate resolution repertoires between WT and AZT(R) RTs on one mismatched replication intermediate. Correlating mismatch extension frequencies observed here with reported viral mutation rates suggests a complex interplay of nucleotide discrimination and mismatch extension drives HIV-1 mutagenesis.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , ADN Viral/genética , Farmacorresistencia Viral/genética , Transcriptasa Inversa del VIH/metabolismo , VIH-1/genética , Nucleótidos/genética , Replicación Viral/genética , Fármacos Anti-VIH/farmacología , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Cartilla de ADN/genética , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , VIH-1/efectos de los fármacos , Humanos , Mutación/efectos de los fármacos , Mutación/genética , Inhibidores de la Transcriptasa Inversa/farmacología , Moldes Genéticos , Replicación Viral/efectos de los fármacos
17.
Genome Res ; 25(8): 1135-46, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25995269

RESUMEN

Long interspersed elements (LINEs), through both self-mobilization and trans-mobilization of short interspersed elements and processed pseudogenes, have made an indelible impact on the structure and function of the human genome. One consequence is the creation of new CpG islands (CGIs). In fact, more than half of all CGIs in the genome are associated with repetitive DNA, three-quarters of which are derived from retrotransposons. However, little is known about the epigenetic impact of newly inserted CGIs. We utilized a transgenic LINE-1 mouse model and tracked DNA methylation dynamics of individual germline insertions during mouse development. The retrotransposed GFP marker sequence, a strong CGI, is hypomethylated in male germ cells but hypermethylated in somatic tissues, regardless of genomic location. The GFP marker is similarly methylated when delivered into the genome via the Sleeping Beauty DNA transposon, suggesting that the observed methylation pattern may be independent of the mode of insertion. Comparative analyses between insertion- and non-insertion-containing alleles further reveal a graded influence of the retrotransposed CGI on flanking CpG sites, a phenomenon that we described as "sloping shores." Computational analyses of human and mouse methylomic data at single-base resolution confirm that sloping shores are universal for hypomethylated CGIs in sperm and somatic tissues. Additionally, the slope of a hypomethylated CGI can be affected by closely positioned CGI neighbors. Finally, by tracing sloping shore dynamics through embryonic and germ cell reprogramming, we found evidence of bookmarking, a mechanism that likely determines which CGIs will be eventually hyper- or hypomethylated.


Asunto(s)
Islas de CpG , Elementos de Nucleótido Esparcido Largo , Ratones Transgénicos/crecimiento & desarrollo , Ratones Transgénicos/genética , Animales , Biología Computacional/métodos , Metilación de ADN , Elementos Transponibles de ADN , Epigénesis Genética , Genoma , Humanos , Masculino , Ratones , Espermatozoides/crecimiento & desarrollo
18.
Mob Genet Elements ; 3(4): e25674, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24195012

RESUMEN

The human genome is laden with both non-LTR (long-terminal repeat) retrotransposons and microsatellite repeats. Both types of sequences are able to, either actively or passively, mutagenize the genomes of human individuals and are therefore poised to dynamically alter the human genomic landscape across generations. Non-LTR retrotransposons, such as L1 and Alu, are a major source of new microsatellites, which are born both concurrently and subsequently to L1 and Alu integration into the genome. Likewise, the mutation dynamics of microsatellite repeats have a direct impact on the fitness of their non-LTR retrotransposon parent owing to microsatellite expansion and contraction. This review explores the interactions and dynamics between non-LTR retrotransposons and microsatellites in the context of genomic variation and evolution.

19.
Proc Natl Acad Sci U S A ; 110(29): E2706-13, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818630

RESUMEN

A codon-optimized mouse LINE-1 element, ORFeus, exhibits dramatically higher retrotransposition frequencies compared with its native long interspersed element 1 counterpart. To establish a retrotransposon-mediated mouse model with regulatable and potent mutagenic capabilities, we generated a tetracycline (tet)-regulated ORFeus element harboring a gene-trap cassette. Here, we show that mice expressing tet-ORFeus broadly exhibit robust retrotransposition in somatic tissues when treated with doxycycline. Consistent with a significant mutagenic burden, we observed a reduced number of double transgenic animals when treated with high-level doxycycline during embryogenesis. Transgene induction in skin resulted in a white spotting phenotype due to somatic ORFeus-mediated mutations that likely disrupt melanocyte development. The data suggest a high level of transposition in melanocyte precursors and consequent mutation of genes important for melanoblast proliferation, differentiation, or migration. These findings reveal the utility of a retrotransposon-based mutagenesis system as an alternative to existing DNA transposon systems. Moreover, breeding these mice to different tet-transactivator/reversible tet-transactivator lines supports broad functionality of tet-ORFeus because of the potential for dose-dependent, tissue-specific, and temporal-specific mutagenesis.


Asunto(s)
Elementos de Nucleótido Esparcido Largo/genética , Melanocitos/metabolismo , Mutagénesis Insercional/métodos , Retroelementos/genética , Animales , Northern Blotting , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Genotipo , Células HeLa , Humanos , Melanocitos/citología , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa , Reacción en Cadena en Tiempo Real de la Polimerasa , Tetraciclina
20.
Mob DNA ; 4(1): 10, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23497436

RESUMEN

BACKGROUND: Long interspersed element type one (L1) actively modifies the human genome by inserting new copies of itself. This process, termed retrotransposition, requires the formation of an L1 ribonucleoprotein (RNP) complex, which must enter the nucleus before retrotransposition can proceed. Thus, the nuclear import of L1 RNP presents an opportunity for cells to regulate L1 retrotransposition post-translationally. The effect of cell division on L1 retrotransposition has been investigated by two previous studies, which observed varied degrees of inhibition in retrotransposition when primary cell strains or cancer cell lines were experimentally arrested in different stages of the cell cycle. However, seemingly divergent conclusions were reached. The role of cell division on retrotransposition remains highly debated. FINDINGS: To monitor both L1 expression and retrotransposition quantitatively, we developed a stable dual-luciferase L1 reporter cell line, in which a bi-directional tetracycline-inducible promoter drives the expression of both a firefly luciferase-tagged L1 element and a Renilla luciferase, the latter indicative of the level of promoter induction. We observed an additional 10-fold reduction in retrotransposition in cell-cycle arrested cells even after retrotransposition had been normalized to Renilla luciferase or L1 ORF1 protein levels. In synchronized cells, cells undergoing two mitoses showed 2.6-fold higher retrotransposition than those undergoing one mitosis although L1 expression was induced for the same amount of time. CONCLUSIONS: Our data provide additional support for an important role of cell division in retrotransposition and argue that restricting the accessibility of L1 RNP to nuclear DNA could be a post-translational regulatory mechanism for retrotransposition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...