Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1365289, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550857

RESUMEN

Low temperature is one of the limiting factors for anaerobic digestion in cold regions. To improve the efficiency of anaerobic digestion for methane production in stationary reactors under low-temperature conditions, and to improve the structure of the microbial community for anaerobic digestion at low temperatures. We investigated the effects of different concentrations of exogenous Methanomicrobium (10, 20, 30%) and different volumes of carbon fiber carriers (0, 10, 20%) on gas production and microbial communities to improve the performance of low-temperature anaerobic digestion systems. The results show that the addition of 30% exogenous microorganisms and a 10% volume of carbon fiber carrier led to the highest daily (128.15 mL/g VS) and cumulative (576.62 mL/g VS) methane production. This treatment effectively reduced the concentrations of COD and organic acid, in addition to stabilizing the pH of the system. High-throughput sequencing analysis revealed that the dominant bacteria under these conditions were Acidobacteria and Firmicutes and the dominant archaea were Candidatus_Udaeobacter and Methanobacterium. While the abundance of microorganisms that metabolize organic acids was reduced, the functional abundance of hydrogenophilic methanogenic microorganisms was increased. Therefore, the synergistic effect of Methanomicrobium bioaugmentation with carbon fiber carriers can significantly improve the performance and efficiency of low-temperature anaerobic fermentation systems.

2.
Front Microbiol ; 14: 1141545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234521

RESUMEN

Low temperature is one of the bottleneck factors that limits the degradation of straw during rice straw incorporation. Determining strategies to promote the efficient degradation of straw in cold regions has become a highly active research area. This study was to investigate the effect of rice straw incorporation by adding exogenous lignocellulose decomposition microbial consortiums at different soil depths in cold regions. The results showed that the lignocellulose was degraded the most efficiently during straw incorporation, which was in deep soil with the full addition of a high-temperature bacterial system. The composite bacterial systems changed the indigenous soil microbial community structure and diminished the effect of straw incorporation on soil pH, it also significantly increased rice yield and effectively enhanced the functional abundance of soil microorganisms. The predominant bacteria SJA-15, Gemmatimonadaceae, and Bradyrhizobium promoted straw degradation. The concentration of bacterial system and the depth of soil had significantly positive correlations on lignocellulose degradation. These results provide new insights and a theoretical basis for the changes in the soil microbial community and the application of lignocellulose-degrading composite microbial systems with straw incorporation in cold regions.

3.
Anim Biotechnol ; 34(4): 1143-1153, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34935579

RESUMEN

IGF2 is an insulin-like growth factor that plays an important role in the development of animal embryos. In order to determine whether IGF2 gene is associated with important economic characteristics of donkeys, we investigated the association between single nucleotide polymorphisms (SNPs) of IGF2 gene and body size traits of Chinese Dezhou donkeys and analyzed the expression level of IGF2 gene in different tissues of juvenile and adult Dezhou donkeys. In this study, two SNPs (g.281766 G > A and g.291322 C > T) were detected in IGF2 gene, both of which were in Hardy-Weinberg equilibrium (P > 0.05) and were moderately polymorphic (0.25 < PIC < 0.50). Association analysis showed that the two SNP loci were significantly correlated with body length and rump height (p < 0.05) of female Dezhou donkeys. Quantitative results showed that the expression of IGF2 gene was higher in heart, liver, spleen, lung, kidney, stomach and muscle tissues of juvenile donkeys than that of adult donkeys. Together, IGF2 can be considered as a candidate gene for growth and development of female Dezhou donkey, and its polymorphism can be used as a molecular marker for the Dezhou donkey breeding.


Asunto(s)
Equidae , Polimorfismo de Nucleótido Simple , Femenino , Animales , Equidae/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Tamaño Corporal
4.
Int J Med Mushrooms ; 24(11): 63-71, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36374949

RESUMEN

Wild edible mushrooms are a huge source to discover bioactive natural products. In this work, one new polyprenylphenol derivative, termed 2-geranylgeranyl-1,4-benzenediol 1-O-acetate (1), together with eight known compounds (2-9) were isolated from wild edible mushroom Suillus luteus. The structure of new compound was elucidated by high-resolution electrospray ionization mass spectroscopy and nuclear magnetic resonance data. The structures of known compounds were elucidated by comparison of their nuclear magnetic resonance data with literature data. Compounds 1-7 exhibited significant 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity with IC50 values ranging from 1.55 ± 0.29 to 19.89 ± 2.28 µM. In addition, compounds 1-7 also showed tyrosinase inhibitory activity with IC50 values ranging from 21.97 ± 3.74 to 66.26 ± 6.85 µM.


Asunto(s)
Agaricales , Basidiomycota , Agaricales/química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Espectrometría de Masa por Ionización de Electrospray , Estructura Molecular , Antioxidantes/farmacología , Antioxidantes/química
5.
Environ Res ; 215(Pt 1): 114197, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36058269

RESUMEN

Wasted coal liquefaction residual was used to synthesize activated carbon fibers (ACFs) for CO2 capture, and the properties of the developed ACFs were optimized by adjusting the activation conditions, including the reaction temperature and soaking time. The yield, element distribution, pore structure, composition, functional group, morphology, and adsorption capacity of the as-synthesized ACFs were characterized by various apparatuses. In addition, static and dynamic adsorption experiments were conducted to investigate the adsorption capacity of CO2 in flue gas. The results revealed that the synthesized ACFs are mainly composed of carbon, accounting for more than 90% of the total elements. The specific surface area, pore volume, and pore width distribution of the prepared ACFs were optimized by changing the activation conditions, and ACFs with a specific surface area higher than 1400 m2/g were successfully developed by activation at 950 for 3 h. The amount of micropores occupied more than 90% of the total pore volume. The pore width distribution dominated by micropores is beneficial for CO2 adsorption since the diameter of CO2 is 0.33 nm. From FTIR and XPS analysis, it is found that the main structure of ACFs is a carbon skeleton composed of polycyclic aromatic hydrocarbons with a small number of oxygen-containing functional groups. The adsorption isotherm of ACFs for CO2 conforms to the Langmuir model, indicating that the adsorption process of CO2 by ACFs can be attributed to monolayer adsorption. Both the specific surface area and oxygen-containing functional groups have crucial effects on the adsorption capacity of CO2. The dynamic adsorption experiment determined that ACFs-920-3 had the highest adsorption capacity for CO2 in flue gas, and adsorption equilibrium was achieved after 7 min of adsorption. The adsorption process of CO2 in flue gas by the as-synthesized ACFs fits well with the pseudosecond kinetic model. The CO2 adsorption capacity of the obtained ACFs remained unchanged after 10 cycles of adsorption. A high-value-added route for synthesizing ACFs for CO2 capture using CLR as a raw material was developed.

6.
J Fungi (Basel) ; 8(7)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35887460

RESUMEN

Edible and medicinal mushrooms are extensively cultivated and commercially consumed around the world. However, green mold disease (causal agent, Trichoderma spp.) has resulted in severe crop losses on mushroom farms worldwide in recent years and has become an obstacle to the development of the Ganoderma industry in China. In this study, a new species and a new fungal pathogen on Ganoderma sichuanense fruitbodies were identified based on the morphological characteristics and phylogenetic analysis of two genes, the translation elongation factor 1-α (TEF1) and the second-largest subunit of RNA polymerase II (RPB2) genes. The new species, Trichoderma ganodermatigerum sp. nov., belongs to the Harzianum clade, and the new fungal pathogen was identified as Trichoderma koningiopsis. Furthermore, in order to better understand the interaction between Trichoderma and mushrooms, as well as the potential biocontrol value of pathogenic Trichoderma, we summarized the Trichoderma species and their mushroom hosts as best as possible, and the phylogenetic relationships within mushroom pathogenic Trichoderma species were discussed.

7.
Environ Pollut ; 303: 119126, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35307497

RESUMEN

Microplastics (MPs) have become a global concern as a key environmental pollutant. MPs are widely found in oceans, rivers, bottled water, plastic-packaged foods, and toiletries. The ocular surface is the exposed mucosal tissue, which comes in contact with MP particles contained in toiletries, tap water, cosmetics, and air. However, the effects of MPs on ocular surface health are still unclear. In this study, the toxic effects of polystyrene MPs (PS-MPs) on the ocular surface in vivo and in vitro were explored. The results demonstrated that 50 nm or 2 µm PS-MPs, following exposure for 48 h appeared in the cytoplasm of two kinds of eye cells in vitro and caused a concentration dependent reduction in cell viability, further causing oxidative stress and cell apoptosis. In addition, after treatment for 2 or 4 weeks, 50 nm and 2 µm PS-MPs were deposited in the conjunctival sac of mice. After 2 and 4 weeks of PS-MP treatment, the number of goblet cells in the lower eyelid conjunctival sac decreased to 65% and 40% of that in the control group, respectively. Moreover, dry eye like ocular surface damage and inflammation of conjunctiva and lacrimal gland in mice were observed. In conclusion, this study revealed that PS-MPs could cause ocular surface dysfunctions in mice, thus providing a new perspective for the toxic effects of MPs on ocular surface.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Ratones , Microplásticos/toxicidad , Estrés Oxidativo , Plásticos/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad
8.
Animals (Basel) ; 12(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35203213

RESUMEN

Skeletal muscle plays an important role in the growth and development of meat animals. MicroRNAs (miRNAs) can participate in the regulation of muscle development-related functions; however, there have been few reports on whether there are related miRNAs that conservatively regulate muscle development among different species. In this study, the miRNA transcriptome sequencing data of the muscle tissue of cattle, rat, goat, and pig showed that miR-24-3p may conservatively regulate muscle development in these species. Furthermore, mmu-miR-24-3p can positively regulate C2C12 cell proliferation and apoptosis by regulating key proliferation and apoptosis genes in muscle development, which was verified by CCK-8 and RT-qPCR. Bta-miR-24-3p can also positively regulate the proliferation and apoptosis of bovine muscle primary cells by regulating key proliferation and apoptosis genes in the process of muscle development, as verified by CCK-8 and RT-qPCR. The target genes of miR-24-3p in cattle, rat, goat, and pig, which include a large proportion of target genes shared among the four species, are enriched in multiple cell functions and signal pathways that are closely related to muscle development, as revealed by GO and KEGG enrichment analysis. A double luciferase test showed that the shared target genes WNT4, CAMK2B, and TCF7 were targeted by mmu-miR-24-3p in rat and bta-miR-24-3p in cattle. These three shared target genes WNT4, CAMK2B, and TCF7 are involved in the Wnt signaling pathway, which showed that miR-24-3p plays an important role in rat and cattle. The shared target gene (CAMK2B) in rat and cattle increased significantly after the inhibition of miR-24-3p by RT-qPCR. The findings of this study contribute to a better understanding of the role of miR-24-3p in the regulation of muscle development.

9.
J Food Biochem ; 46(2): e14075, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34984694

RESUMEN

In China, Armillaria mellea (Vahl) P. Kumm. has been used as a folk medicine to treat insomnia for several hundred years. However, the underlying mechanisms involved are currently unknown. In this study, the anti-insomnia efficacy of A. mellea fermentation liquor (AFL) was evaluated in p-chlorophenylalanine-induced insomnia rats by measuring the serotonergic systems and gut microbiota. Our results demonstrate that all doses of AFL significantly reduced locomotor activity and alleviated decreasing weights in insomnia rats. Further, AFL exhibited better sedative effects by reducing sleep latency and increasing sleep duration in pentobarbital-treated rats. AFL treatment also elevated serum glutathione peroxidase and superoxide dismutase levels, while reducing serum interleukin-6, tumor necrosis factor-α, and interleukin-1ß levels. Furthermore, AFL alleviated insomnia by enhancing 5-hydroxytryptamine content and the expression 5-HT1A and 5-HT2A receptor in the hippocampus. Meanwhile, AFL treatment normalized the composition of gut microbiota in insomnia-model rats, while increasing relative abundance of Lachnospiraceae, Ruminococcaceae, and Saccharimonadaceae restores the gut microbial ecosystem altered in insomnia rats. The experiments show that A. mellea alleviated insomnia by modulating serotonergic system and gut microbiota. PRACTICAL APPLICATIONS: Insomnia has become a serious health issue of global concern. As a well-known traditional Chinese medicine, Armillaria mellea has been clinically employed in the treatment of insomnia for centuries in Asia with significant efficacy. In the present study, we firstly reported A. mellea fermentation liquor potentially relieved insomnia rats by alteration of gut microbiota and serotonergic systems and could guide future clinical studies. As a popular edible and medicinal mushroom, A. mellea also can be potentially used in the development and production of novel food products in the future.


Asunto(s)
Microbioma Gastrointestinal , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Armillaria , Ecosistema , Fenclonina , Fermentación , Ratas , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico
10.
Theriogenology ; 181: 131-139, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35093835

RESUMEN

The cryopreservation technology of sperm has promoted the popularization of artificial insemination in the reproductive process of donkeys to a certain extent, but the freezing-thawing process would bring damage to the sperm, and the vitality of the sperm would be greatly reduced after freezing. Sperm metabolites play an important role in the process of sperm freezing, and also have an important impact on the vitality and fertilization rate of sperm after freezing-thawing. In this study, the LC-MS/MS analysis method was used to compare the metabolic profiles of high freezability (HF) and low freezability (LF) male donkey sperm after freezing-thawing. We identified 1323 metabolites in total, of which 17 metabolites are significantly different between the two groups. Most of these metabolites belong to fatty acids and phospholipids, including phosphatidylcholine, stearic acid and so on. These different metabolites are mostly related to the plasma membrane fatty acids of sperm and oxidative stress. Our results illustrate several metabolites related to sperm freezability and provide corresponding biomarkers.


Asunto(s)
Preservación de Semen , Animales , Cromatografía Liquida/veterinaria , Criopreservación/veterinaria , Equidae , Congelación , Masculino , Preservación de Semen/veterinaria , Motilidad Espermática , Espermatozoides , Espectrometría de Masas en Tándem/veterinaria
11.
Biodivers Data J ; 10: e87697, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761523

RESUMEN

Paxillus, a type of ectomycorrhizal fungi distributed widely in the world, is also an essential category for researching bioactive substances and pharmacological functions. We discovered fruitbodies of Paxillusinvolutus covered in a layer of white mycelium in 2020. Cladobotryumverticillatum, a pathogenic fungus related to cobweb disease, was isolated and identified based on morphological and phylogenetic features. Koch's postulates were used to confirm the pathogenicity. The host range test revealed that C.verticillatum could cause disease in all examined mushrooms except Ganodermasichuanense. To our knowledge, C.verticillatum is a new record species in China and a new pathogen on Paxillusinvolutus.

12.
Exp Eye Res ; 210: 108706, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34324861

RESUMEN

Maintenance of the corneal refractive power and tissue transparency is essential for normal vision. Real-time characterization of changes in corneal cells during suffering stresses or wound healing may provide a way to identify novel targets, whose therapeutic manipulation can improve the outcome of this response induced by injury. Here we describe a novel user friendly and effective confocal real-time confocal microscopy attachment that monitors the effects of anisoosmotic stress on cell morphology and corneal thickness in situ. Corneal epithelial nuclei gradually became highly reflective in the isotonic group and the corneal stroma was slightly thickened as compared with that seen prior to 60 min exposure to a hypotonic solution. After 30 min of exposure to hypertonic stress, the corneal stromal cells became crenate and shriveled. The hyper-reflective area of the corneal stroma in the hypo-osmotic group was significantly larger than that in the other two groups, as demonstrated by 3D reconstruction imaging. The hypotonic fresh chlorinated pool water was observed to cause atrophy of corneal epithelial nuclei, while the isosmotic bee venom solution caused high reflection of the corneal stroma layer and corneal endothelial cell damage. With the microscopic attachment, the inward movement of corneal epithelial cells toward the denuded central region was detected in the serum-treated group. The microscopy attachment is an effective system for obtaining a more detailed understanding of the time dependent losses in the corneal cell structure and tissue architecture of full thickness corneas induced by osmotic stress or cytotoxic agents.


Asunto(s)
Córnea/efectos de los fármacos , Córnea/diagnóstico por imagen , Estrés Fisiológico , Animales , Sistemas de Computación , Soluciones Hipotónicas/farmacología , Soluciones Isotónicas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Presión Osmótica/fisiología , Solución Salina Hipertónica/farmacología
13.
Front Cell Dev Biol ; 9: 675998, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277619

RESUMEN

It has been a long-standing challenge to obtain from cell cultures adequate amounts of mouse corneal epithelial cells (mCEC) to perform transplantation surgery. This limitation is attributable to the passage dependent declines in their proliferative activity. We describe here development of a novel 6C medium that contains six different modulators of different signaling pathways, which control proliferative mCEC activity. Its usage shortens the time and effort required to obtain epithelial sheets for hastening healing of an epithelial wound in an experimental animal model. This serum-free 6C medium contains:Y27632, forskolin, SB431542, DAPT, IWP-2, LDN-193189 and also DermaLife K keratinocyte calcium. Their inclusion inhibits rises in four specific markers of epithelial mesenchymal transdifferentiation:ZEB1/2, Snail, ß-catenin and α-SMA. This medium is applied in a feeder-free air-lifted system to obtain sufficient populations of epithelial progenitor cells whose procurement is facilitated due to suppression of progenitor epithelial cell transdifferentiation into epithelial-mesenchymal cells. Diminution of this decline in transdifferentiation was confirmed based on the invariance of P63, K14, Pax6, and K12 gene expression levels. This cell culture technique is expected to facilitate ex vivo characterization of mechanisms underlying cell fate determination. Furthermore, its implementation will improve yields of progenitor mouse corneal epithelial cells, which increases the likelihood of using these cells as a source to generate epithelial sheets for performing transplantation surgery to treat limbal stem cell deficiency in a clinical setting. In addition, the novel insight obtainable from such studies is expected to improve the outcomes of corneal regenerative medicine.

14.
Environ Pollut ; 287: 117540, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34147784

RESUMEN

Cigarette smoke extract (CSE), a complex mixture of compounds, contributes to a range of eye diseases; however, the underlying pathophysiological responses to tobacco smoke remain ambiguous. The purpose of the present study was to evaluate the cigarette smoke-induced phenotypic and transcriptomic changes in the corneal epithelium with a view to elucidating the likely underlying mechanism. Accordingly, for the first time, we characterized the genome-wide effects of CSE on the corneal epithelium. The ocular surface of the mice in the experimental groups was exposed to CSE for 1 h per day for a period of one week, while mice in the control group were exposed to preservative-free artificial tears. Corneal fluorescein staining, in vivo confocal microscopy and scanning electron microscopy were performed to examine the corneal ultrastructure. Transcriptome sequencing and bioinformatics analysis were performed followed by RT-qPCR to validate gene expression changes. The results indicate that CSE exposure disrupted the structural integrity of the superficial epithelium, decreased the density of microvilli, and compromised the corneal epithelial barrier intactness. RNA-seq revealed 667 differentially expressed genes, and functional analysis highlighted the enhancement of several biological processes such as antioxidant activity and the response to oxidative stress. Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that glutathione metabolism and drug metabolism cytochrome P450 were the most relevant pathways contributing to the effects of CSE on the corneal epithelium. Protein-protein interaction (PPI) network analysis illustrated that GCLC, NQO1, and HMOX1 were the most relevant nodes. In conclusion, the present study indicates that CSE exposure induces changes in the phenotype and genotype of the corneal epithelium. The antioxidant response element is essential for counteracting the effects of cigarette smoke on this tissue layer. These results shed novel insights into how cigarette smoke damages this ocular surface.


Asunto(s)
Epitelio Corneal , Transcriptoma , Animales , Células Epiteliales , Ratones , Fenotipo , Humo/efectos adversos , Fumar , Nicotiana
15.
Gene ; 785: 145602, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33766712

RESUMEN

T-box transcription factor 3 (TBX3) gene encodes a transcriptional suppressor and plays an important role in embryonic development, which belongs to the T-box family. TBX3 also has been found to be associated with body size traits in horse that is a relative of donkey. Therefore, TBX3 is considered as a promising candidate gene for economic traits of donkey. This study aimed to reveal the significant variation of TBX3 gene in Dezhou donkey and explores the relationship between genotypes and body sizes. In this study, an A > G mutation was found in the intron 2 of TBX3 gene by sequencing, and three genotypes (AA, GG and AG) were identified in 380 Dezhou donkey individuals with Tm-shift method. Association analysis illustrated that there were significant differences between AA and GG genotype in body length, body height, chest depth, chest circumference, body weight, hucklebone width and rump length. Our results demonstrated that the polymorphism of TBX3 is significantly associated with body size traits, which can serve as a marker to improve donkey production performance.


Asunto(s)
Tamaño Corporal/genética , Equidae/anatomía & histología , Equidae/genética , Proteínas de Dominio T Box/genética , Animales , Femenino , Genotipo , Intrones/genética , Masculino , Mutación , Polimorfismo de Nucleótido Simple , Proteínas de Dominio T Box/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA