Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Innovation (Camb) ; 5(2): 100590, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38426201

RESUMEN

Causal inference has recently garnered significant interest among recommender system (RS) researchers due to its ability to dissect cause-and-effect relationships and its broad applicability across multiple fields. It offers a framework to model the causality in RSs such as confounding effects and deal with counterfactual problems such as offline policy evaluation and data augmentation. Although there are already some valuable surveys on causal recommendations, they typically classify approaches based on the practical issues faced in RS, a classification that may disperse and fragment the unified causal theories. Considering RS researchers' unfamiliarity with causality, it is necessary yet challenging to comprehensively review relevant studies from a coherent causal theoretical perspective, thereby facilitating a deeper integration of causal inference in RS. This survey provides a systematic review of up-to-date papers in this area from a causal theory standpoint and traces the evolutionary development of RS methods within the same causal strategy. First, we introduce the fundamental concepts of causal inference as the basis of the following review. Subsequently, we propose a novel theory-driven taxonomy, categorizing existing methods based on the causal theory employed, namely those based on the potential outcome framework, the structural causal model, and general counterfactuals. The review then delves into the technical details of how existing methods apply causal inference to address particular recommender issues. Finally, we highlight some promising directions for future research in this field. Representative papers and open-source resources will be progressively available at https://github.com/Chrissie-Law/Causal-Inference-for-Recommendation.

2.
IEEE Trans Med Imaging ; 43(4): 1284-1295, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37966939

RESUMEN

Radiologists possess diverse training and clinical experiences, leading to variations in the segmentation annotations of lung nodules and resulting in segmentation uncertainty. Conventional methods typically select a single annotation as the learning target or attempt to learn a latent space comprising multiple annotations. However, these approaches fail to leverage the valuable information inherent in the consensus and disagreements among the multiple annotations. In this paper, we propose an Uncertainty-Aware Attention Mechanism (UAAM) that utilizes consensus and disagreements among multiple annotations to facilitate better segmentation. To this end, we introduce the Multi-Confidence Mask (MCM), which combines a Low-Confidence (LC) Mask and a High-Confidence (HC) Mask. The LC mask indicates regions with low segmentation confidence, where radiologists may have different segmentation choices. Following UAAM, we further design an Uncertainty-Guide Multi-Confidence Segmentation Network (UGMCS-Net), which contains three modules: a Feature Extracting Module that captures a general feature of a lung nodule, an Uncertainty-Aware Module that produces three features for the annotations' union, intersection, and annotation set, and an Intersection-Union Constraining Module that uses distances between the three features to balance the predictions of final segmentation and MCM. To comprehensively demonstrate the performance of our method, we propose a Complex-Nodule Validation on LIDC-IDRI, which tests UGMCS-Net's segmentation performance on lung nodules that are difficult to segment using common methods. Experimental results demonstrate that our method can significantly improve the segmentation performance on nodules that are difficult to segment using conventional methods.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Incertidumbre , Pulmón/diagnóstico por imagen
3.
Innovation (Camb) ; 4(6): 100525, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38028137
4.
IEEE Trans Pattern Anal Mach Intell ; 45(8): 10212-10227, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37030723

RESUMEN

The teacher-free online Knowledge Distillation (KD) aims to train an ensemble of multiple student models collaboratively and distill knowledge from each other. Although existing online KD methods achieve desirable performance, they often focus on class probabilities as the core knowledge type, ignoring the valuable feature representational information. We present a Mutual Contrastive Learning (MCL) framework for online KD. The core idea of MCL is to perform mutual interaction and transfer of contrastive distributions among a cohort of networks in an online manner. Our MCL can aggregate cross-network embedding information and maximize the lower bound to the mutual information between two networks. This enables each network to learn extra contrastive knowledge from others, leading to better feature representations, thus improving the performance of visual recognition tasks. Beyond the final layer, we extend MCL to intermediate layers and perform an adaptive layer-matching mechanism trained by meta-optimization. Experiments on image classification and transfer learning to visual recognition tasks show that layer-wise MCL can lead to consistent performance gains against state-of-the-art online KD approaches. The superiority demonstrates that layer-wise MCL can guide the network to generate better feature representations. Our code is publicly avaliable at https://github.com/winycg/L-MCL.


Asunto(s)
Algoritmos , Aprendizaje , Humanos
5.
Artículo en Inglés | MEDLINE | ID: mdl-35820013

RESUMEN

Knowledge distillation (KD) is an effective framework that aims to transfer meaningful information from a large teacher to a smaller student. Generally, KD often involves how to define and transfer knowledge. Previous KD methods often focus on mining various forms of knowledge, for example, feature maps and refined information. However, the knowledge is derived from the primary supervised task, and thus, is highly task-specific. Motivated by the recent success of self-supervised representation learning, we propose an auxiliary self-supervision augmented task to guide networks to learn more meaningful features. Therefore, we can derive soft self-supervision augmented distributions as richer dark knowledge from this task for KD. Unlike previous knowledge, this distribution encodes joint knowledge from supervised and self-supervised feature learning. Beyond knowledge exploration, we propose to append several auxiliary branches at various hidden layers, to fully take advantage of hierarchical feature maps. Each auxiliary branch is guided to learn self-supervision augmented tasks and distill this distribution from teacher to student. Overall, we call our KD method a hierarchical self-supervision augmented KD (HSSAKD). Experiments on standard image classification show that both offline and online HSSAKD achieves state-of-the-art performance in the field of KD. Further transfer experiments on object detection further verify that HSSAKD can guide the network to learn better features. The code is available at https://github.com/winycg/HSAKD.

6.
Innovation (Camb) ; 2(4): 100179, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34877560

RESUMEN

Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA