Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Curr Protoc ; 4(4): e1032, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606955

RESUMEN

The therapeutic potential of mesenchymal stromal cells (MSCs) has been extensively investigated in both preclinical and clinical settings. Recent years have witnessed the emergence of numerous isolation protocols and culture techniques, ranging from the selection of subpopulations to preserve stemness to preconditioning strategies aimed at enhancing therapeutic efficacy, tailored to the specific tissue source. In this protocol, we present a straightforward and cost-effective method for isolating human MSCs (hMSCs) from discarded bone marrow collection kits (comprising bag and filter systems) originally intended for removing impurities and unwanted cellular debris from the collected bone marrow aspirate, ensuring the purity of the stem cell population during stem cell transplantation. Utilizing basic laboratory equipment, we demonstrate the isolation of hMSCs, highlighting the expression of specific surface antigens, and multilineage differentiation into adipogenic, osteogenic, and chondrogenic lineages in vitro. This sustainable and resource-efficient approach not only contributes to reducing medical waste but also holds promise for advancing regenerative medicine applications. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Isolation of human mesenchymal stromal cells from bone marrow collection kits Basic Protocol 2: Culture of human mesenchymal stromal cells Basic Protocol 3: Characterization of human mesenchymal stromal cells with flow cytometry analysis Basic Protocol 4: Characterization of human mesenchymal stromal cells with multilineage differentiation under in vitro conditions.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Adipogénesis , Citometría de Flujo
2.
Stem Cell Rev Rep ; 13(5): 587-597, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28766102

RESUMEN

From orthopedic to neurological disorders, stem cells are used as platforms to understand disease mechanisms and considered as novel and promising treatment options, especially when the valid therapeutic approaches are unavailable or ineffective. There are different stem cell types in the literature, however the spindle-shaped, colony forming and multilineage-differentiating cells, also known as mesenchymal stem cells (MSC) are very popular, as MSC can be isolated from different tissues with minimal ethical concerns and without tumor formations, which make them easily accessible and widely used in vitro and in vivo studies. In the literature, MSC have been shown to have therapeutic effects and orchestrate the healing process via their mobilization, migration, differentiation capacities, immunomodulation properties and/or secretion of bioactive factors. Nowadays, MSC derived extracellular matrices (ECM), which are part of the secreted/produced bioactive molecules from MSC; draw attention of researchers due to their key roles in cell biology. Several groups have isolated ECM from in vitro cultured MSC using different methods of decellularization techniques for tissue-engineering approaches. According to current knowledge, decellularized ECM (dECM) influence growth, adhesion, differentiation, migration, apoptosis, proliferation, and phenotype of cells, covering almost all cellular events. In this comprehensive review we focused on MSC and the isolation methods and effects of MSC derived dECM (MSC-dECM).


Asunto(s)
Matriz Extracelular/química , Células Madre Mesenquimatosas/citología , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Adhesión Celular , Técnicas de Cultivo de Célula , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Humanos , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA