Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Antiviral Res ; 224: 105837, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387750

RESUMEN

The COVID-19 pandemic has shown the need to develop effective therapeutics in preparedness for further epidemics of virus infections that pose a significant threat to human health. As a natural compound antiviral candidate, we focused on α-dystroglycan, a highly glycosylated basement membrane protein that links the extracellular matrix to the intracellular cytoskeleton. Here we show that the N-terminal fragment of α-dystroglycan (α-DGN), as produced in E. coli in the absence of post-translational modifications, blocks infection of SARS-CoV-2 in cell culture, human primary gut organoids and the lungs of transgenic mice expressing the human receptor angiotensin I-converting enzyme 2 (hACE2). Prophylactic and therapeutic administration of α-DGN reduced SARS-CoV-2 lung titres and protected the mice from respiratory symptoms and death. Recombinant α-DGN also blocked infection of a wide range of enveloped viruses including the four Dengue virus serotypes, influenza A virus, respiratory syncytial virus, tick-borne encephalitis virus, but not human adenovirus, a non-enveloped virus in vitro. This study establishes soluble recombinant α-DGN as a broad-band, natural compound candidate therapeutic against enveloped viruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Humanos , Distroglicanos , Pandemias , Escherichia coli , Ratones Transgénicos , Antivirales/farmacología
2.
PLoS Pathog ; 19(2): e1011125, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36787339

RESUMEN

Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the endoplasmic reticulum membrane and acquires the viral envelope and the associated proteins. The coordination of the nucleocapsid components to the sites of assembly and budding are poorly understood. Here, we investigate the interactions of the wild-type and truncated capsid proteins with membranes with biophysical methods and model membrane systems. We show that capsid protein initially binds membranes via electrostatic interactions with negatively-charged lipids, which is followed by membrane insertion. Additionally, we show that membrane-bound capsid protein can recruit viral genomic RNA. We confirm the biological relevance of the biophysical findings by using mass spectrometry to show that purified virions contain negatively-charged lipids. Our results suggest that nucleocapsid assembly is coordinated by negatively-charged membrane patches on the endoplasmic reticulum and that the capsid protein mediates direct contacts between the nucleocapsid and the membrane.


Asunto(s)
Proteínas de la Cápside , Virus de la Encefalitis Transmitidos por Garrapatas , Proteínas de la Cápside/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Ensamble de Virus , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de la Membrana/metabolismo , Lípidos , Unión Proteica
3.
Viruses ; 14(9)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36146795

RESUMEN

Severe acute respiratory syndrome coronavirus-2 is the causative agent of COVID-19. During the pandemic of 2019-2022, at least 500 million have been infected and over 6.3 million people have died from COVID-19. The virus is pleomorphic, and due to its pathogenicity is often handled in very restrictive biosafety containments laboratories. We developed two effective and rapid purification methods followed by UV inactivation that allow easy downstream handling of the virus. We monitored the purification through titering, sequencing, mass spectrometry and electron cryogenic microscopy. Although pelleting through a sucrose cushion, followed by gentle resuspension overnight gave the best particle recovery, infectivity decreased, and the purity was significantly worse than if using the size exclusion resin Capto Core. Capto Core can be used in batch mode, and was seven times faster than the pelleting method, obviating the need for ultracentrifugation in the containment laboratory, but resulting in a dilute virus. UV inactivation was readily optimized to allow handling of the inactivated samples under standard operating conditions. When containment laboratory space is limited, we recommend the use of Capto Core for purification and UV for inactivation as a simple, rapid workflow prior, for instance, to electron cryogenic microscopy or cell activation experiments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Proteómica , Sacarosa , Inactivación de Virus
4.
Viruses ; 14(4)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458522

RESUMEN

Tick-borne encephalitis virus (TBEV) is a pathogenic, enveloped, positive-stranded RNA virus in the family Flaviviridae. Structural studies of flavivirus virions have primarily focused on mosquito-borne species, with only one cryo-electron microscopy (cryo-EM) structure of a tick-borne species published. Here, we present a 3.3 Å cryo-EM structure of the TBEV virion of the Kuutsalo-14 isolate, confirming the overall organisation of the virus. We observe conformational switching of the peripheral and transmembrane helices of M protein, which can explain the quasi-equivalent packing of the viral proteins and highlights their importance in stabilising membrane protein arrangement in the virion. The residues responsible for M protein interactions are highly conserved in TBEV but not in the structurally studied Hypr strain, nor in mosquito-borne flaviviruses. These interactions may compensate for the lower number of hydrogen bonds between E proteins in TBEV compared to the mosquito-borne flaviviruses. The structure reveals two lipids bound in the E protein which are important for virus assembly. The lipid pockets are comparable to those recently described in mosquito-borne Zika, Spondweni, Dengue, and Usutu viruses. Our results thus advance the understanding of tick-borne flavivirus architecture and virion-stabilising interactions.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Animales , Microscopía por Crioelectrón , Culicidae , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/ultraestructura , Proteínas Virales/metabolismo , Virión/metabolismo , Virión/ultraestructura , Virus Zika/metabolismo , Infección por el Virus Zika
5.
Science ; 370(6518): 856-860, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33082293

RESUMEN

The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1. A SARS-CoV-2 mutant with an altered furin cleavage site did not depend on NRP1 for infectivity. Pathological analysis of olfactory epithelium obtained from human COVID-19 autopsies revealed that SARS-CoV-2 infected NRP1-positive cells facing the nasal cavity. Our data provide insight into SARS-CoV-2 cell infectivity and define a potential target for antiviral intervention.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/virología , Neuropilina-1/metabolismo , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Betacoronavirus/genética , COVID-19 , Células CACO-2 , Femenino , Células HEK293 , Interacciones Microbiota-Huesped , Humanos , Pulmón/metabolismo , Masculino , Nanopartículas del Metal , Ratones , Ratones Endogámicos C57BL , Mutación , Neuropilina-1/química , Neuropilina-1/genética , Neuropilina-1/inmunología , Neuropilina-2/metabolismo , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/virología , Pandemias , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Dominios Proteicos , Mucosa Respiratoria/metabolismo , SARS-CoV-2 , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/química
6.
Viruses ; 10(7)2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29958443

RESUMEN

Tick-borne encephalitis virus (TBEV) is a growing health concern. It causes a severe disease that can lead to permanent neurological complications or death and the incidence of TBEV infections is constantly rising. Our understanding of TBEV’s structure lags behind that of other flaviviruses, but has advanced recently with the publication of a high-resolution structure of the TBEV virion. The gaps in our knowledge include: aspects of receptor binding, replication and virus assembly. Furthermore, TBEV has mostly been studied in mammalian systems, even though the virus’ interaction with its tick hosts is a central part of its life cycle. Elucidating these aspects of TBEV biology are crucial for the development of TBEV antivirals, as well as the improvement of diagnostics. In this review, we summarise the current structural knowledge on TBEV, bringing attention to the current gaps in our understanding, and propose further research that is needed to truly understand the structural-functional relationship of the virus and its hosts.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/virología , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/ultraestructura , Genoma Viral , Genómica/métodos , Humanos , Estadios del Ciclo de Vida , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/metabolismo , Replicación Viral
7.
J Gen Virol ; 98(6): 1145-1158, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28631594

RESUMEN

Picornaviruses are the most commonly encountered infectious agents in mankind. They typically cause mild infections of the gastrointestinal or respiratory tract, but sometimes also invade the central nervous system. There, they can cause severe diseases with long-term sequelae and even be lethal. The most infamous picornavirus is poliovirus, for which significant epidemics of poliomyelitis were reported from the end of the nineteenth century. A successful vaccination campaign has brought poliovirus close to eradication, but neurological diseases caused by other picornaviruses have increasingly been reported since the late 1990s. In this review we focus on enterovirus 71, coxsackievirus A16, enterovirus 68 and human parechovirus 3, which have recently drawn attention because of their links to severe neurological diseases. We discuss the clinical relevance of these viruses and the primary role of humoral immunity in controlling them, and summarize current knowledge on the neutralization of such viruses by antibodies.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Enfermedades Virales del Sistema Nervioso Central/inmunología , Infecciones por Picornaviridae/inmunología , Picornaviridae/inmunología , Animales , Enfermedades Virales del Sistema Nervioso Central/virología , Modelos Animales de Enfermedad , Humanos , Picornaviridae/fisiología , Infecciones por Picornaviridae/virología
8.
Biochim Biophys Acta ; 1859(11): 1440-1448, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27664935

RESUMEN

Influenza NS1 protein is an important virulence factor that is capable of binding double-stranded (ds) RNA and inhibiting dsRNA-mediated host innate immune responses. Here we show that NS1 can also bind cellular dsDNA. This interaction prevents loading of transcriptional machinery to the DNA, thereby attenuating IAV-mediated expression of antiviral genes. Thus, we identified a previously undescribed strategy, by which RNA virus inhibits cellular transcription to escape antiviral response and secure its replication.


Asunto(s)
ADN/metabolismo , Transcripción Genética/fisiología , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Cromatina/metabolismo , Humanos , Virus de la Influenza A/fisiología , Unión Proteica , Proteínas no Estructurales Virales/fisiología , Replicación Viral
9.
Antiviral Res ; 126: 69-80, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26738783

RESUMEN

Influenza A viruses (IAVs) impact the public health and global economy by causing yearly epidemics and occasional pandemics. Several anti-IAV drugs are available and many are in development. However, the question remains which of these antiviral agents may allow activation of immune responses and protect patients against co- and re-infections. To answer to this question, we analysed immuno-modulating properties of the antivirals saliphenylhalamide (SaliPhe), SNS-032, obatoclax, and gemcitabine, and found that only gemcitabine did not impair immune responses in infected cells. It also allowed activation of innate immune responses in lipopolysaccharide (LPS)- and interferon alpha (IFNα)-stimulated macrophages. Moreover, immuno-mediators produced by gemcitabine-treated IAV-infected macrophages were able to prime immune responses in non-infected cells. Thus, we identified an antiviral agent which might be beneficial for treatment of patients with severe viral infections.


Asunto(s)
Antineoplásicos/farmacología , Antivirales/farmacología , Factores Inmunológicos/farmacología , Gripe Humana/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/virología , Amidas/farmacología , Células Cultivadas , Coinfección/tratamiento farmacológico , Coinfección/virología , Citocinas/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Humanos , Inmunidad Innata/efectos de los fármacos , Indoles , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Gripe Humana/virología , Interferón-alfa/efectos de los fármacos , Interferón-alfa/inmunología , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Oxazoles/farmacología , Fosfoproteínas/metabolismo , Pirroles/farmacología , ARN Viral/biosíntesis , Salicilatos/farmacología , Tiazoles/farmacología , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología , Gemcitabina
10.
J Gen Virol ; 96(8): 2086-2091, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25934792

RESUMEN

Non-structural protein NS1 of influenza A viruses interacts with cellular factors through its N-terminal RNA-binding, middle effector and C-terminal non-structured domains. NS1 attenuates antiviral responses in infected cells and thereby secures efficient virus replication. Some influenza strains express C-terminally truncated NS1 proteins due to nonsense mutations in the NS1 gene. To understand the role of the NS1 C-terminal region in regulation of antiviral responses, we engineered influenza viruses expressing C-terminally truncated NS1 proteins using A/WSN/33(H1N1) reverse genetics and tested them in human macrophages and in mice. We showed that a WSN virus expressing NS1 with a 28 aa deletion from its C terminus is a more powerful inducer of antiviral responses than the virus expressing full-length NS1, or one with a 10 aa truncation of NS1 in vitro. Thus, our findings suggest that the C-terminal region of NS1 is essential for regulation of antiviral responses. Moreover, viruses expressing truncated NS1 proteins could be good vaccine candidates.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Macrófagos/inmunología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/inmunología , Secuencias de Aminoácidos , Animales , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Macrófagos/virología , Ratones , Ratones Endogámicos BALB C , Proteínas no Estructurales Virales/genética , Replicación Viral
11.
Biotechniques ; 56(1): 36-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24447137

RESUMEN

Rabbit reticulocyte lysate (RRL) is a mammalian cell-free system for protein production. However, one of the limitations of this system is its low protein yield. Inclusion of recombinant virus proteins and specific viral structures on target mRNA could enhance protein production in RRL. Here we show that simultaneous addition of influenza A virus NS1 protein and inclusion of the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) in the target mRNA facilitate translation initiation and increase protein yield over 10-fold, improving the translation capacity of RRL.


Asunto(s)
Sistema Libre de Células , Biosíntesis de Proteínas , Reticulocitos/metabolismo , Animales , ARN Mensajero/genética , Conejos , Proteínas Recombinantes/biosíntesis , Proteínas no Estructurales Virales/genética
12.
Biotechniques ; 52(4): 263-70, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22482442

RESUMEN

Primer-independent cDNA synthesis during reverse transcription hinders quantitative analysis of bidirectional mRNA synthesis in eukaryotes as well as in cells infected with RNA viruses. We report a simple RT-PCR-based assay for strand-specific gene-expression analysis. By modifying the cDNA sequence during reverse transcription, the opposite strands of target sequences can be simultaneously detected by postamplification melting curve analysis and primer-initiated transcripts are readily distinguished from nonspecifically primed cDNA. We have utilized this technique to optimize the specificity of reverse transcription on a panel of 15 target genes. Primer-independent reverse transcription occurred for all target sequences when reverse transcription was performed at 42°C and accounted for 11%-57% of the final PCR amplification products. By raising the reaction temperature to 55°C, the specificity of reverse transcription could be increased without significant loss of sensitivity. We have also demonstrated the utility of this technique for analysis of (+) and (-) RNA synthesis of influenza A virus in infected cells. Thus, this technique represents a powerful tool for analysis of bidirectional RNA synthesis.


Asunto(s)
Cartilla de ADN/metabolismo , ADN Complementario/biosíntesis , Regulación de la Expresión Génica , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transcripción Reversa/genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Datos de Secuencia Molecular , Desnaturalización de Ácido Nucleico , ARN Polimerasa Dependiente del ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Temperatura , Proteínas Virales/genética
13.
Trends Pharmacol Sci ; 33(2): 89-99, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22196854

RESUMEN

At the global level, influenza A virus (IAV) is considered a major health threat because it causes significant morbidity. Different treatment and prevention options have been developed; however, these are insufficient in the face of recent IAV outbreaks. In particular, available antiviral agents have limited effectiveness owing to IAV resistance to these virus-directed drugs. Recent advances in understanding of IAV replication have revealed a number of cellular drug targets that counteract viral drug resistance. This review summarizes current knowledge on IAV replication with a focus on emerging cellular drug targets. Interestingly, for many of these targets, compounds for which safety testing has been carried out in humans are available. It is possible that some of these compounds, such as inhibitors of heat shock protein 90, proteasome, importin α5 or protein kinase C, will be used for treatment of IAV infections after careful evaluation in human primary cells and severely ill flu patients.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Antivirales/uso terapéutico , Humanos , Virus de la Influenza A/fisiología , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Replicación Viral/efectos de los fármacos
14.
J Biol Chem ; 286(9): 7239-47, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21163951

RESUMEN

The nonstructural protein NS1 of influenza A virus blocks the development of host antiviral responses by inhibiting polyadenylation of cellular pre-mRNA. NS1 also promotes the synthesis of viral proteins by stimulating mRNA translation. Here, we show that recombinant NS1 proteins of human pandemic H1N1/2009, avian highly pathogenic H5N1, and low pathogenic H5N2 influenza strains differentially affected these two cellular processes: NS1 of the two avian strains, in contrast to NS1 of H1N1/2009, stimulated translation of reporter mRNA in cell-free translation system; NS1 of H5N1 was an effective inhibitor of cellular pre-mRNA polyadenylation in A549 cells, unlike NS1 of H5N2 and H1N1/2009. We identified key amino acids in NS1 that contribute to its activity in these two basic cellular processes. Thus, we identified strain-specific differences between influenza virus NS1 proteins in pre-mRNA polyadenylation and mRNA translation.


Asunto(s)
Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Biosíntesis de Proteínas/fisiología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/patogenicidad , Modelos Químicos , Datos de Secuencia Molecular , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/fisiopatología , Pandemias , Poliadenilación/fisiología , Estabilidad Proteica , Estructura Terciaria de Proteína , Precursores del ARN/metabolismo , Especificidad de la Especie , Proteínas no Estructurales Virales/química , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA