Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gene ; 819: 146246, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35122924

RESUMEN

Triple-negative breast cancer (TNBC) represents a challenge in the search for new therapeutic targets. TNBCs are aggressive and generate resistance to chemotherapy. Tumors of TNBC patients with poor prognosis present a high level of adenosine deaminase acting on RNA1 (ADAR1). We explore the connection of ADAR1 with the canonical Wnt signaling pathway and the effect of modulation of its expression in TNBC. Expression data from cell line sequencing (DepMap) and TCGA samples were downloaded and analyzed. We lentivirally generated an MDA-MB-231 breast cancer cell line that overexpress (OE) ADAR1p110 or an ADAR knockdown. Abundance of different proteins related to Wnt/ß-catenin pathway and activity of nuclear ß-catenin were analyzed by Western blot and luciferase TOP/FOP reporter assay, respectively. Cell invasion was analyzed by matrigel assay. In mice, we study the behavior of tumors generated from ADAR1p110 (OE) cells and tumor vascularization immunostaining were analyzed. ADAR1 connects to the canonical Wnt pathway in TNBC. ADAR1p110 overexpression decreased GSK-3ß, while increasing active ß-catenin. It also increased the activity of nuclear ß-catenin and increased its target levels. ADAR1 knockdown has the opposite effect. MDA-MB-231 ADAR1 (OE) cells showed increased capacity of invasion. Subsequently, we observed that tumors derived from ADAR1p110 (OE) cells showed increased invasion towards the epithelium, and increased levels of Survivin and CD-31 expressed in vascular endothelial cells. These results indicate that ADAR1 overexpression alters the expression of some key components of the canonical Wnt pathway, favoring invasion and neovascularization, possibly through activation of the ß-catenin, which suggests an unknown role of ADAR1p110 in aggressiveness of TNBC tumors.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Fenotipo , Vía de Señalización Wnt , beta Catenina/metabolismo
2.
J Bone Miner Res ; 34(10): 1851-1861, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31099911

RESUMEN

Renal transplantation (RTx) is an effective therapy to improve clinical outcomes in pediatric patients with terminal chronic kidney disease. However, chronic immunosuppression with glucocorticoids (GCs) reduces bone growth and BMD. The mechanisms causing GC-induced growth impairment have not been fully clarified. Fibroblast growth factor 23 (FGF23) is a peptide hormone that regulates phosphate homeostasis and bone growth. In pathological conditions, FGF23 excess or abnormal FGF receptors (FGFR) activity leads to bone growth impairment. Experimental data indicate that FGF23 expression is induced by chronic GC exposure. Therefore, we hypothesize that GCs impair bone growth by increasing FGF23 expression, which has direct effects on bone growth plate. In a post hoc analysis of a multicentric randomized clinical trial of prepubertal RTx children treated with early GC withdrawal or chronic GC treatment, we observed that GC withdrawal was associated with improvement in longitudinal growth and BMD, and lower plasma FGF23 levels as compared with a chronic GC group. In prepubertal rats, GC-induced bone growth retardation correlated with increased plasma FGF23 and bone FGF23 expression. Additionally, GC treatment decreased FGFR1 expression whereas it increased FGFR3 expression in mouse tibia explants. The GC-induced bone growth impairment in tibiae explants was prevented by blockade of FGF23 receptors using either a pan-FGFR antagonist (PD173074), a C-terminal FGF23 peptide (FGF23180-205) which blocks the binding of FGF23 to the FGFR-Klotho complex or a specific FGFR3 antagonist (P3). Finally, local administration of PD173074 into the tibia growth plate ameliorated cartilage growth impairment in GC-treated rats. These results show that GC treatment partially reduces longitudinal bone growth via upregulation of FGF23 and FGFR3 expression, thus suggesting that the FGF23/Klotho/FGFR3 axis at the growth plate could be a potential therapeutic target for the management of GC-induced growth impairment in children.


Asunto(s)
Desarrollo Óseo/efectos de los fármacos , Huesos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Glucocorticoides/administración & dosificación , Trasplante de Riñón , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Densidad Ósea/efectos de los fármacos , Huesos/patología , Niño , Femenino , Factor-23 de Crecimiento de Fibroblastos , Estudios de Seguimiento , Glucocorticoides/efectos adversos , Humanos , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/patología , Fallo Renal Crónico/cirugía , Proteínas Klotho , Masculino , Proteínas de la Membrana , Ratones , Ratas , Ratas Sprague-Dawley
3.
J Cell Physiol ; 234(3): 2037-2050, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30343491

RESUMEN

Transient Receptor Potential Melastatin 4 (TRPM4) is a Ca2+ -activated and voltage-dependent monovalent cation channel, which depolarizes the plasma cell membrane, thereby modulating Ca2+ influx across Ca2+ -permeable pathways. TRPM4 is involved in different physiological processes such as T cell activation and the migration of endothelial and certain immune cells. Overexpression of this channel has been reported in various types of tumors including prostate cancer. In this study, a significant overexpression of TRPM4 was found only in samples from cancer with a Gleason score higher than 7, which are more likely to spread. To evaluate whether TRPM4 overexpression was related to the spreading capability of tumors, TRPM4 was knockdown by using shRNAs in PC3 prostate cancer cells and the effect on cellular migration and invasion was analyzed. PC3 cells with reduced levels of TRPM4 (shTRPM4) display a decrease of the migration/invasion capability. A reduction in the expression of Snail1, a canonical epithelial to mesenchymal transition (EMT) transcription factor, was also observed. Consistently, these cells showed a significant change in the expression of key EMT markers such as MMP9, E-cadherin/N-cadherin, and vimentin, indicating a partial reversion of the EMT process. Whereas, the overexpression of TRPM4 in LnCaP cells resulted in increased levels of Snail1, reduction in the expression of E-cadherin and increase in their migration potential. This study suggests a new and indirect mechanism of regulation of migration/invasion process by TRPM4 in prostate cancer cells, by inducing the expression of Snail1 gene and consequently, increasing the EMT.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Canales Catiónicos TRPM/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Modelos Biológicos , Clasificación del Tumor , Invasividad Neoplásica , Células PC-3 , Neoplasias de la Próstata/genética , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética , Regulación hacia Arriba
4.
Oncotarget ; 9(41): 26387-26405, 2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29899866

RESUMEN

Enhanced radiosensitivity at low doses of ionizing radiation (IR) (0.2 to 0.6 Gy) has been reported in several cell lines. This phenomenon, known as low doses hyper-radiosensitivity (LDHRS), appears as an opportunity to decrease toxicity of radiotherapy and to enhance the effects of chemotherapy. However, the effect of low single doses IR on cell death is subtle and the mechanism underlying LDHRS has not been clearly explained, limiting the utility of LDHRS for clinical applications. To understand the mechanisms responsible for cell death induced by low-dose IR, LDHRS was evaluated in DLD-1 human colorectal cancer cells and the expression of 80 microRNAs (miRNAs) was assessed by qPCR array. Our results show that DLD-1 cells display an early DNA damage response and apoptotic cell death when exposed to 0.6 Gy. miRNA expression profiling identified 3 over-expressed (miR-205-3p, miR-1 and miR-133b) and 2 down-regulated miRNAs (miR-122-5p, and miR-134-5p) upon exposure to 0.6 Gy. This miRNA profile differed from the one in cells exposed to high-dose IR (12 Gy), supporting a distinct low-dose radiation-induced cell death mechanism. Expression of a mimetic miR-205-3p, the most overexpressed miRNA in cells exposed to 0.6 Gy, induced apoptotic cell death and, more importantly, increased LDHRS in DLD-1 cells. Thus, we propose miR-205-3p as a potential radiosensitizer to low-dose IR.

5.
Mol Oncol ; 12(2): 151-165, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28614631

RESUMEN

Increased expression of the TRPM4 channel has been reported to be associated with the progression of prostate cancer. However, the molecular mechanism underlying its effect remains unknown. This work found that decreasing TRPM4 levels leads to the reduced proliferation of PC3 cells. This effect was associated with a decrease in total ß-catenin protein levels and its nuclear localization, and a significant reduction in Tcf/Lef transcriptional activity. Moreover, TRPM4 silencing increases the Ser33/Ser37/Thr41 ß-catenin phosphorylated population and reduces the phosphorylation of GSK-3ß at Ser9, suggesting an increase in ß-catenin degradation as the underlying mechanism. Conversely, TRPM4 overexpression in LNCaP cells increases the Ser9 inhibitory phosphorylation of GSK-3ß and the total levels of ß-catenin and its nonphosphorylated form. Finally, PC3 cells with reduced levels of TRPM4 showed a decrease in basal and stimulated phosphoactivation of Akt1, which is likely responsible for the decrease in GSK-3ß activity in these cells. Our results also suggest that the effect of TRPM4 on Akt1 is probably mediated by an alteration in the calcium/calmodulin-EGFR axis, linking TRPM4 activity with the observed effects in ß-catenin-related signaling pathways. These results suggest a role for TRPM4 channels in ß-catenin oncogene signaling and underlying mechanisms, highlighting this ion channel as a new potential target for future therapies in prostate cancer.


Asunto(s)
Proliferación Celular/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Canales Catiónicos TRPM/metabolismo , beta Catenina/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Glucógeno Sintasa Quinasa 3 beta/genética , Células HEK293 , Humanos , Masculino , Células PC-3 , Fosforilación/genética , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-akt/genética , Canales Catiónicos TRPM/genética , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...