Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol ; 211(5): 862-873, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37466368

RESUMEN

Trypanosomes are known to activate the complement system on their surface, but they control the cascade in a manner such that the cascade does not progress into the terminal pathway. It was recently reported that the invariant surface glycoprotein ISG65 from Trypanosoma brucei interacts reversibly with complement C3 and its degradation products, but the molecular mechanism by which ISG65 interferes with complement activation remains unknown. In this study, we show that ISG65 does not interfere directly with the assembly or activity of the two C3 convertases. However, ISG65 acts as a potent inhibitor of C3 deposition through the alternative pathway in human and murine serum. Degradation assays demonstrate that ISG65 stimulates the C3b to iC3b converting activity of complement factor I in the presence of the cofactors factor H or complement receptor 1. A structure-based model suggests that ISG65 promotes a C3b conformation susceptible to degradation or directly bridges factor I and C3b without contact with the cofactor. In addition, ISG65 is observed to form a stable ternary complex with the ligand binding domain of complement receptor 3 and iC3b. Our data suggest that ISG65 supports trypanosome complement evasion by accelerating the conversion of C3b to iC3b through a unique mechanism.


Asunto(s)
Trypanosoma brucei brucei , Ratones , Animales , Humanos , Trypanosoma brucei brucei/metabolismo , Complemento C3b/metabolismo , Receptores de Complemento 3b , Activación de Complemento , Factor H de Complemento/metabolismo , Fibrinógeno , Vía Alternativa del Complemento , Convertasas de Complemento C3-C5/metabolismo
2.
J Biol Chem ; 295(7): 1781-1791, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31819010

RESUMEN

Iron is an essential nutrient for all living organisms. To acquire iron, many pathogens have developed elaborate systems to steal it from their hosts. The iron acquisition system in the opportunistic pathogen Staphylococcus aureus comprises nine proteins, called iron-regulated surface determinants (Isds). The Isd components enable S. aureus to extract heme from hemoglobin (Hb), transport it into the bacterial cytoplasm, and ultimately release iron from the porphyrin ring. IsdB and IsdH act as hemoglobin receptors and are known to actively extract heme from extracellular Hb. To limit microbial pathogenicity during infection, host organisms attempt to restrict the availability of nutrient metals at the host-pathogen interface. The human acute phase protein haptoglobin (Hp) protects the host from oxidative damage by clearing hemoglobin that has leaked from red blood cells and also restricts the availability of extracellular Hb-bound iron to invading pathogens. To investigate whether Hp serves an additional role in nutritional immunity through a direct inhibition of IsdH-mediated iron acquisition, here we measured heme extraction from the Hp-Hb complex by UV-visible spectroscopy and determined the crystal structure of the Hp-Hb-IsdH complex at 2.9 Å resolution. We found that Hp strongly inhibits IsdH-mediated heme extraction and that Hp binding prevents local unfolding of the Hb heme pocket, leaving IsdH unable to wrest the heme from Hb. Furthermore, we noted that the Hp-Hb binding appears to trap IsdH in an initial state before heme transfer. Our findings provide insights into Hp-mediated IsdH inhibition and the dynamics of IsdH-mediated heme extraction.


Asunto(s)
Antígenos Bacterianos/química , Haptoglobinas/química , Interacciones Huésped-Patógeno/genética , Receptores de Superficie Celular/química , Infecciones Estafilocócicas/genética , Cristalografía por Rayos X , Eritrocitos/metabolismo , Eritrocitos/microbiología , Haptoglobinas/genética , Haptoglobinas/ultraestructura , Hemo/química , Hemo/genética , Hemoglobinas/química , Hemoglobinas/genética , Humanos , Hierro/química , Hierro/metabolismo , Unión Proteica/genética , Conformación Proteica , Receptores de Superficie Celular/antagonistas & inhibidores , Infecciones Estafilocócicas/sangre , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad
3.
Nat Commun ; 8(1): 503, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28894089

RESUMEN

Coronary artery disease is the main cause of death worldwide and accelerated by increased plasma levels of cholesterol-rich low-density lipoprotein particles (LDL). Circulating PCSK9 contributes to coronary artery disease by inducing lysosomal degradation of the LDL receptor (LDLR) in the liver and thereby reducing LDL clearance. Here, we show that liver heparan sulfate proteoglycans are PCSK9 receptors and essential for PCSK9-induced LDLR degradation. The heparan sulfate-binding site is located in the PCSK9 prodomain and formed by surface-exposed basic residues interacting with trisulfated heparan sulfate disaccharide repeats. Accordingly, heparan sulfate mimetics and monoclonal antibodies directed against the heparan sulfate-binding site are potent PCSK9 inhibitors. We propose that heparan sulfate proteoglycans lining the hepatocyte surface capture PCSK9 and facilitates subsequent PCSK9:LDLR complex formation. Our findings provide new insights into LDL biology and show that targeting PCSK9 using heparan sulfate mimetics is a potential therapeutic strategy in coronary artery disease.PCSK9 interacts with LDL receptor, causing its degradation, and consequently reduces the clearance of LDL. Here, Gustafsen et al. show that PCSK9 interacts with heparan sulfate proteoglycans and this binding favors LDLR degradation. Pharmacological inhibition of this binding can be exploited as therapeutic intervention to lower LDL levels.


Asunto(s)
Proteoglicanos de Heparán Sulfato/metabolismo , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo , Anticuerpos/farmacología , Sitios de Unión , Inhibidores Enzimáticos/farmacología , Células Hep G2 , Heparina/química , Heparina/farmacología , Hepatocitos/metabolismo , Humanos , Inhibidores de PCSK9 , Proproteína Convertasa 9/química , Proproteína Convertasa 9/genética , Proteolisis
4.
Nat Commun ; 5: 5487, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25410714

RESUMEN

Sleeping sickness is caused by trypanosome parasites, which infect humans and livestock in Sub-Saharan Africa. Haem is an important growth factor for the parasites and is acquired from the host by receptor-mediated uptake of haptoglobin (Hp)-haemoglobin (Hb) complexes. The parasite Hp-Hb receptor (HpHbR) is also a target for a specialized innate immune defence executed by trypanosome-killing lipoprotein particles containing an Hp-related protein in complex with Hb. Here we report the structure of the multimeric complex between human Hp-Hb and Trypanosoma brucei brucei HpHbR. Two receptors forming kinked three-helical rods with small head regions bind to Hp and the ß-subunits of Hb (ßHb), with one receptor at each end of the dimeric Hp-Hb complex. The Hb ß-subunit haem group directly associates with the receptors, which allows for sensing of haem-containing Hp-Hb. The HpHbR-binding region of Hp is conserved in Hp-related protein, indicating an identical recognition of Hp-Hb and trypanolytic particles by HpHbR in human plasma.


Asunto(s)
Haptoglobinas/metabolismo , Hemo/metabolismo , Hemoglobinas/metabolismo , Proteínas Protozoarias/metabolismo , Receptores de Superficie Celular/metabolismo , Trypanosoma brucei brucei/metabolismo , Humanos , Inmunidad Innata/inmunología , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/inmunología , Receptores de Superficie Celular/inmunología
5.
Trends Biochem Sci ; 39(2): 82-90, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24393667

RESUMEN

Nutrients, biological waste-products, toxins, pathogens, and other ligands for endocytosis are typically captured by multidomain receptors with multiligand specificity. Upon internalization, the receptor-ligand complex segregates, followed by lysosomal degradation of the ligand and recycling of the receptor. Endosomal acidification and calcium efflux lead to the essential ligand-receptor affinity switch and separation. Recent data, including crystal structures of receptor-ligand complexes, now reveal how calcium, in different types of domain scaffolds, functions in a common way as a removable 'lynchpin' that stabilizes favorable positioning of ligand-attractive receptor residues. In addition to explaining how calcium depletion can cause ligand-receptor dissociation, the new data add further insight into how acidification contributes to dissociation through structural changes that affect the receptor calcium sites.


Asunto(s)
Calcio/metabolismo , Endocitosis/genética , Endosomas/metabolismo , Células Eucariotas/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Transporte Biológico , Señalización del Calcio , Células Eucariotas/citología , Regulación de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética
6.
Nat Rev Gastroenterol Hepatol ; 9(6): 345-54, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22547309

RESUMEN

Vitamin B(12) (B(12); also known as cobalamin) is a cofactor in many metabolic processes; deficiency of this vitamin is associated with megaloblastic anaemia and various neurological disorders. In contrast to many prokaryotes, humans and other mammals are unable to synthesize B(12). Instead, a sophisticated pathway for specific uptake and transport of this molecule has evolved. Failure in the gastrointestinal part of this pathway is the most common cause of nondietary-induced B(12) deficiency disease. However, although less frequent, defects in cellular processing and further downstream steps in the transport pathway are also known culprits of functional B(12) deficiency. Biochemical and genetic approaches have identified novel proteins in the B(12) transport pathway--now known to involve more than 15 gene products--delineating a coherent pathway for B(12) trafficking from food to the body's cells. Some of these gene products are specifically dedicated to B(12) transport, whereas others embrace additional roles, which explains the heterogeneity in the clinical picture of the many genetic disorders causing B(12) deficiency. This Review describes basic and clinical features of this multistep pathway with emphasis on gastrointestinal transport of B(12) and its importance in clinical medicine.


Asunto(s)
Alimentos , Tracto Gastrointestinal/metabolismo , Vitamina B 12/metabolismo , Transporte Biológico/fisiología , Tracto Gastrointestinal/citología , Humanos , Transducción de Señal/fisiología , Deficiencia de Vitamina B 12/genética , Deficiencia de Vitamina B 12/fisiopatología
7.
RNA ; 15(1): 67-75, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19033377

RESUMEN

The exon junction complex (EJC) is deposited onto spliced mRNAs and is involved in many aspects of mRNA function. We have recently reconstituted and solved the crystal structure of the EJC core made of MAGOH, Y14, the most conserved portion of MLN51, and the DEAD-box ATPase eIF4AIII bound to RNA in the presence of an ATP analog. The heterodimer MAGOH/Y14 inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA, but the exact mechanism behind this remains unclear. Here, we present the crystal structure of the EJC core bound to ADP-AIF(3), the first structure of a DEAD-box helicase in the transition-mimicking state during ATP hydrolysis. It reveals a dissociative transition state geometry and suggests that the locking of the EJC onto the RNA by MAGOH/Y14 is not caused by preventing ATP hydrolysis. We further show that ATP can be hydrolyzed inside the EJC, demonstrating that MAGOH/Y14 acts by locking the conformation of the EJC, so that the release of inorganic phosphate, ADP, and RNA is prevented. Unifying features of ATP hydrolysis are revealed by comparison of our structure with the EJC-ADPNP structure and other helicases. The reconstitution of a transition state mimicking complex is not limited to the EJC and eIF4AIII as we were also able to reconstitute the complex Dbp5-RNA-ADP-AlF(3), suggesting that the use of ADP-AlF(3) may be a valuable tool for examining DEAD-box ATPases in general.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , ARN Helicasas DEAD-box/química , Exones/fisiología , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/metabolismo , Hidrólisis , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformación Proteica , ARN Helicasas/metabolismo , Ribonucleoproteínas/metabolismo
8.
RNA ; 13(12): 2213-23, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17959927

RESUMEN

The Sm and Sm-like proteins are conserved in all three domains of life and have emerged as important players in many different RNA-processing reactions. Their proposed role is to mediate RNA-RNA and/or RNA-protein interactions. In marked contrast to eukaryotes, bacteria appear to contain only one distinct Sm-like protein belonging to the Hfq family of proteins. Similarly, there are generally only one or two subtypes of Sm-related proteins in archaea, but at least one archaeon, Methanococcus jannaschii, encodes a protein that is related to Hfq. This archaeon does not contain any gene encoding a conventional archaeal Sm-type protein, suggesting that Hfq proteins and archaeal Sm-homologs can complement each other functionally. Here, we report the functional characterization of M. jannaschii Hfq and its crystal structure at 2.5 A resolution. The protein forms a hexameric ring. The monomer fold, as well as the overall structure of the complex is similar to that found for the bacterial Hfq proteins. However, clear differences are seen in the charge distribution on the distal face of the ring, which is unusually negative in M. jannaschii Hfq. Moreover, owing to a very short N-terminal alpha-helix, the overall diameter of the archaeal Hfq hexamer is significantly smaller than its bacterial counterparts. Functional analysis reveals that Escherichia coli and M. jannaschii Hfqs display very similar biochemical and biological properties. It thus appears that the archaeal and bacterial Hfq proteins are largely functionally interchangeable.


Asunto(s)
Proteínas Arqueales/química , Proteína de Factor 1 del Huésped/química , Methanococcus/química , ARN de Archaea/química , Proteínas de Unión al ARN/química , Ribonucleoproteínas Nucleares Pequeñas/química , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica
9.
Nature ; 443(7112): 663-8, 2006 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-16929303

RESUMEN

Elongation factor eEF3 is an ATPase that, in addition to the two canonical factors eEF1A and eEF2, serves an essential function in the translation cycle of fungi. eEF3 is required for the binding of the aminoacyl-tRNA-eEF1A-GTP ternary complex to the ribosomal A-site and has been suggested to facilitate the clearance of deacyl-tRNA from the E-site. Here we present the crystal structure of Saccharomyces cerevisiae eEF3, showing that it consists of an amino-terminal HEAT repeat domain, followed by a four-helix bundle and two ABC-type ATPase domains, with a chromodomain inserted in ABC2. Moreover, we present the cryo-electron microscopy structure of the ATP-bound form of eEF3 in complex with the post-translocational-state 80S ribosome from yeast. eEF3 uses an entirely new factor binding site near the ribosomal E-site, with the chromodomain likely to stabilize the ribosomal L1 stalk in an open conformation, thus allowing tRNA release.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/química , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas Fúngicas/ultraestructura , Regulación Fúngica de la Expresión Génica , Modelos Biológicos , Modelos Moleculares , Factores de Elongación de Péptidos/ultraestructura , Conformación Proteica , Ribosomas/química , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae , Relación Estructura-Actividad
10.
Science ; 313(5795): 1968-72, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16931718

RESUMEN

In higher eukaryotes, a multiprotein exon junction complex is deposited on spliced messenger RNAs. The complex is organized around a stable core, which serves as a binding platform for numerous factors that influence messenger RNA function. Here, we present the crystal structure of a tetrameric exon junction core complex containing the DEAD-box adenosine triphosphatase (ATPase) eukaryotic initiation factor 4AIII (eIF4AIII) bound to an ATP analog, MAGOH, Y14, a fragment of MLN51, and a polyuracil mRNA mimic. eIF4AIII interacts with the phosphate-ribose backbone of six consecutive nucleotides and prevents part of the bound RNA from being double stranded. The MAGOH and Y14 subunits lock eIF4AIII in a prehydrolysis state, and activation of the ATPase probably requires only modest conformational changes in eIF4AIII motif I.


Asunto(s)
Factor 4A Eucariótico de Iniciación/química , Exones , Proteínas de Neoplasias/química , Proteínas Nucleares/química , Poli U/química , ARN Mensajero/química , Proteínas de Unión al ARN/química , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , ARN Helicasas DEAD-box , Dimerización , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Humanos , Enlace de Hidrógeno , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Poli U/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...