RESUMEN
The synthetic Notch receptor (synNotch) system is a versatile platform that induces gene transcription in response to extracellular signals. However, its application has been largely confined to membrane-bound targets due to specific activation requirements. Whether synNotch can also target extracellular protein aggregates, such as amyloid beta (Aß) in Alzheimer's disease (AD), is unclear. To address this, we engineered an Aß-targeting synNotch receptor controlling the production of chimeric human-mouse versions of Lecanemab (Leqembi®) or Aducanumab (Aduhelm®), both FDA-approved antibodies for AD. We demonstrate that NIH 3T3 cells expressing this synNotch system detect and respond to extracellular Aß aggregates by synthesizing and secreting Aducanumab or Lecanemab. These findings broaden the potential applications of synNotch, extending its targets beyond membrane-bound proteins to extracellular protein aggregates, providing obvious benefits to research in this scientific arena.
RESUMEN
Loss of proteostasis is a highly conserved feature of aging across model organisms and results in the accumulation of insoluble protein aggregates. Protein insolubility is also a unifying feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), in which hundreds of insoluble proteins associate with aggregated amyloid beta (Aß) in senile plaques. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven generalized protein insolubility as a contributing factor. However, proteins that become insoluble during aging in model organisms are capable of accelerating Aß aggregation in vitro and lifespan in vivo. Here, using an unbiased proteomics approach, we questioned the relationship between Aß and age-related protein insolubility. Specifically, we uncovered that Aß expression drives proteome-wide protein insolubility in C. elegans, even in young animals, and this insoluble proteome is highly similar to the insoluble proteome driven by normal aging, this vulnerable sub-proteome we term the core insoluble proteome (CIP). We show that the CIP is enriched with proteins that modify Aß toxicity in vivo, suggesting the possibility of a vicious feedforward cycle in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the geroprotective, gut-derived metabolite, Urolithin A, relieves Aß toxicity, supporting its use in clinical trials for dementia and age-related diseases.
Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Caenorhabditis elegans , Proteoma , Péptidos beta-Amiloides/metabolismo , Animales , Proteoma/metabolismo , Envejecimiento/metabolismo , Envejecimiento/genética , Caenorhabditis elegans/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Humanos , Proteómica , Proteostasis , Solubilidad , Modelos Animales de EnfermedadRESUMEN
The "gut-brain axis" is emerging as an important target in Alzheimer's disease (AD). However, immunological mechanisms underlying this axis remain poorly understood. Using single-cell RNA sequencing of the colon immune compartment in the 5XFAD amyloid-ß (Aß) mouse model, we uncovered AD-associated changes in ribosomal activity, oxidative stress, and BCR/plasma cell activity. Strikingly, levels of colon CXCR4 + antibody secreting cells (ASCs) were significantly reduced. This corresponded with accumulating CXCR4 + B cells and gut-specific IgA + cells in the brain and dura mater, respectively. Consistently, a chemokine ligand for CXCR4, CXCL12, was expressed at higher levels in 5XFAD glial cells and in in silico analyzed human brain studies, supporting altered neuroimmune trafficking. An inulin prebiotic fiber diet attenuated AD markers including Aß plaques and overall frailty. These changes corresponded to an expansion of gut IgA + cells and rescued peripheral T regs levels. Our study points to a key glia-gut axis and potential targets against AD. Study Highlights: AD is associated with altered immune parameters in the gut of 5XFAD mice. 5 XFAD colon has reduced ASCs, including CXCR4 + cells with a migratory gene signature. 5XFAD brain gliosis includes increased CXCL12 expression. CXCR4 + B cells and gut-specific IgA + ASCs accumulate in the 5XFAD brain and/or dura mater. Inulin diet attenuates AD disease parameters while boosting IgA + cell and T reg levels.
RESUMEN
Autophagy-lysosomal function is crucial for maintaining healthy lifespan and preventing age-related diseases. The transcription factor TFEB plays a key role in regulating this pathway. Decreased TFEB expression is associated with various age-related disorders, making it a promising therapeutic target. In this study, we screened a natural product library and discovered mitophagy-inducing coumarin (MIC), a benzocoumarin compound that enhances TFEB expression and lysosomal function. MIC robustly increases the lifespan of Caenorhabditis elegans in an HLH-30/TFEB-dependent and mitophagy-dependent manner involving DCT-1/BNIP3 while also preventing mitochondrial dysfunction in mammalian cells. Mechanistically, MIC acts by inhibiting ligand-induced activation of the nuclear hormone receptor DAF-12/FXR, which, in turn, induces mitophagy and extends lifespan. In conclusion, our study uncovers MIC as a promising drug-like molecule that enhances mitochondrial function and extends lifespan by targeting DAF-12/FXR. Furthermore, we discovered DAF-12/FXR as a previously unknown upstream regulator of HLH-30/TFEB and mitophagy.
Asunto(s)
Proteínas de Caenorhabditis elegans , Mitofagia , Animales , Longevidad/genética , Caenorhabditis elegans/genética , Autofagia , Receptores Citoplasmáticos y Nucleares/genética , Mamíferos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismoRESUMEN
Loss of proteostasis is a highly conserved feature of aging across model organisms and typically results in the accumulation of insoluble protein aggregates. Protein insolubility is a central feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), where hundreds of insoluble proteins associate with aggregated amyloid beta (Aß) in senile plaques. Moreover, proteins that become insoluble during aging in model organisms are capable of accelerating Aß aggregation in vitro. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven protein insolubility as a contributory factor. Here, using an unbiased proteomics approach, we questioned the relationship between Aß and age-related protein insolubility. We demonstrate that Aß expression drives proteome-wide protein insolubility in C. elegans and this insoluble proteome closely resembles the insoluble proteome driven by normal aging, suggesting the possibility of a vicious feedforward cycle of aggregation in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the CIP is enriched with proteins that modulate the toxic effects of Aß and that the gut-derived metabolite, Urolithin A, relieves Aß toxicity, supporting its use in clinical trials for dementia and other age-related diseases.
RESUMEN
Alzheimer's disease and Alzheimer's related diseases (ADRD) are a class of prevalent age-related neurodegenerative disorders characterized by the accumulation of amyloid- ß (Aß) plaques and Tau neurofibrillary tangles. The intricate interplay between Aß and Tau proteins requires further investigation to better understand the precise mechanisms underlying disease pathology. The nematode Caenorhabditis elegans ( C. elegans ) serves as an invaluable model organism for studying aging and neurodegenerative diseases. Here we performed an unbiased systems analysis of a C. elegans strain expressing both Aß and Tau proteins within neurons. Intriguingly, even at an early stage of adulthood, we observed reproductive impairments and mitochondrial dysfunction consistent with substantial disruptions in mRNA transcript abundance, protein solubility, and metabolite levels. Notably, the simultaneous expression of these two neurotoxic proteins exhibited a synergistic effect, leading to accelerated aging in the model organism. Our comprehensive findings shed new light on the intricate relationship between normal aging processes and the etiology of ADRD. Specifically, we demonstrate the alterations to metabolic functions precede age-related neurotoxicity, offering critical insights into potential therapeutic strategies.
RESUMEN
Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.
Asunto(s)
Envejecimiento , Taurina , Animales , Humanos , Ratones , Envejecimiento/sangre , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Senescencia Celular , Haplorrinos , Longevidad/efectos de los fármacos , Longevidad/fisiología , Taurina/sangre , Taurina/deficiencia , Taurina/farmacología , Suplementos Dietéticos , Daño del ADN/efectos de los fármacos , Telomerasa/metabolismoRESUMEN
In the present study, we investigated the effects of urolithin A (UA), a metabolite generated from ellagic acid via its metabolism by gut bacteria, as an autophagy activator with potential neuroprotective activity. WT and 3xTg-AD mice were administered long-term intermittent dietary supplementation with UA. UA was found to prevent deficits in spatial memory, cued fear response, and exploratory behavior in this model. It also decreased the Aß plaque burden in areas of the hippocampus where these protein deposits are prominent in the model. Interestingly, correlation analyses demonstrate that Aß plaque burden positively correlates with enhanced spatial memory in 3xTg-AD mice on a control diet but not in those supplemented with UA. In contrast, Aß42 abundance in cortical and hippocampal homogenates negatively correlate with spatial memory in UA-fed mice. Our data suggest that plaque formation may be a protective mechanism against neurodegeneration and cognitive decline and that targeting the generation of proteotoxic Aß species might be a more successful approach in halting disease progression. UA was also found to extend lifespan in normal aging mice. Mechanistically, we demonstrate that UA is able to induce autophagy and to increase Aß clearance in neuronal cell lines. In summary, our studies reveal UA, likely via its actions as a autophagy inducer, is capable of removing Aß from neurons and its dietary administration prevents the onset of cognitive deficits associated with pathological Aß deposition in the 3xTg-AD mouse model as well as extending lifespan in normal aging mice.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Aprendizaje por Laberinto , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , CogniciónRESUMEN
Lysosomes are crucial for degradation and recycling of damaged proteins and cellular components. Therapeutic strategies enhancing lysosomal function are a promising approach for aging and age-related neurodegenerative diseases. Here, we show that an FDA approved drug sodium polystyrene sulfonate (SPS), used to reduce high blood potassium in humans, enhances lysosomal function both in C. elegans and in human neuronal cells. Enhanced lysosomal function following SPS treatment is accompanied by the suppression of proteotoxicity caused by expression of the neurotoxic peptides Aß and TAU. Additionally, treatment with SPS imparts health benefits as it significantly increases lifespan in C. elegans. Overall our work supports the potential use of SPS as a prospective geroprotective intervention.
Asunto(s)
Caenorhabditis elegans , Potasio , Animales , Humanos , Potasio/metabolismo , Estudios Prospectivos , Lisosomas/metabolismoRESUMEN
Obesity and ageing predispose to numerous, yet overlapping chronic diseases. For example, metabolic abnormalities, including insulin resistance (IR) and type 2 diabetes (T2D) are important causes of morbidity and mortality. Low-grade chronic inflammation of tissues, such as the liver, visceral adipose tissue and neurological tissues, is considered a significant contributor to these chronic diseases. Thus, it is becoming increasingly important to understand what drives this inflammation in affected tissues. Recent evidence, especially in the context of obesity, suggests that the intestine plays an important role as the gatekeeper of inflammatory stimuli that ultimately fuels low-grade chronic tissue inflammation. In addition to metabolic diseases, abnormalities in the intestinal mucosal barrier have been linked to a range of other chronic inflammatory conditions, such as neurodegeneration and ageing. The flow of inflammatory stimuli from the gut is in part controlled by local immunological inputs impacting the intestinal barrier. Here, we will review the impact of obesity and ageing on the intestinal immune system and its downstream consequences on gut barrier function, which is strongly implicated in the pathogenesis of obesity and age-related diseases. In particular, we will discuss the effects of age-related intestinal dysfunction on neurodegenerative diseases.
Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Obesidad/metabolismo , Inflamación , Envejecimiento , Hígado/metabolismoRESUMEN
Parkinson's disease (PD) is a chronic, neurodegenerative condition characterized by motor symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the substantia nigra. PD incidence increases sharply with age, suggesting a strong association between mechanisms driving biological aging and the development and progression of PD. However, the role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including cell models, toxin-induced models, and genetic models in rodents and nonhuman primates (NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain some aging features, but their characterization, particularly of aging markers and reproducibility of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models indicates an association, but this is likely in conjunction with other disease drivers. The biggest barrier to drawing firm conclusions is that each model lacks full characterization and appropriate time-course assessments. There is a need to systematically investigate whether aging increases the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of cell models. We propose that a significant investment in time and resources, together with the coordination and sharing of resources, knowledge, and data, is required to accelerate progress in understanding the role of biological aging in PD development and improve the reliability of models to test interventions.
RESUMEN
We used CRISPR/Cas9 gene editing in C. elegans in order to fluorescently tag endogenous aconitase-2 (ACO-2). ACO-2 is a mitochondrially localized protein, and the aco-2::gfp strain enabled the examination of native mitochondrial morphology in live animals. Here we validate that the aco-2::gfp strain displays the prototypic changes in mitochondrial morphology known to occur during aging and upon paraquat (PQ) induced mitochondrial stress. We also provide evidence that the ACO-2::GFP reporter can serve as a superior means for tracking mitochondrial morphology than conventional MitoTracker dyes-especially in aged-worms.
RESUMEN
Despite significant overlaps in mission, the fields of environmental health sciences and aging biology are just beginning to intersect. It is increasingly clear that genetics alone does not predict an individual's neurological aging and sensitivity to disease. Accordingly, aging neuroscience is a growing area of mutual interest within environmental health sciences. The impetus for this review came from a workshop hosted by the National Academies of Sciences, Engineering, and Medicine in June of 2020, which focused on integrating the science of aging and environmental health research. It is critical to bridge disciplines with multidisciplinary collaborations across toxicology, comparative biology, epidemiology to understand the impacts of environmental toxicant exposures and age-related outcomes. This scoping review aims to highlight overlaps and gaps in existing knowledge and identify essential research initiatives. It begins with an overview of aging biology and biomarkers, followed by examples of synergy with environmental health sciences. New areas for synergistic research and policy development are also discussed. Technological advances including next-generation sequencing and other-omics tools now offer new opportunities, including exposomic research, to integrate aging biomarkers into environmental health assessments and bridge disciplinary gaps. This is necessary to advance a more complete mechanistic understanding of how life-time exposures to toxicants and other physical and social stressors alter biological aging. New cumulative risk frameworks in environmental health sciences acknowledge that exposures and other external stressors can accumulate across the life course and the advancement of new biomarkers of exposure and response grounded in aging biology can support increased understanding of population vulnerability. Identifying the role of environmental stressors, broadly defined, on aging biology and neuroscience can similarly advance opportunities for intervention and translational research. Several areas of growing research interest include expanding exposomics and use of multi-omics, the microbiome as a mediator of environmental stressors, toxicant mixtures and neurobiology, and the role of structural and historical marginalization and racism in shaping persistent disparities in population aging and outcomes. Integrated foundational and translational aging biology research in environmental health sciences is needed to improve policy, reduce disparities, and enhance the quality of life for older individuals.
RESUMEN
Cellular senescence is a potential tumor-suppressive mechanism that generally results in an irreversible cell cycle arrest. Senescent cells accumulate with age and actively secrete soluble factors, collectively termed the 'senescence-associated secretory phenotype' (SASP), which has both beneficial and detrimental effects. Although the contribution of senescent cells to age-related pathologies has been well-established outside the brain, emerging evidence indicates that brain cells also undergo cellular senescence and contribute to neuronal loss in the context of age-related neurodegenerative diseases. Contribution of senescent cells in the pathogenesis of neurological disorders has led to the possibility of eliminating senescence cells via pharmacological compounds called senolytics. Recently several senolytics have been demonstrated to elicit improved cognitive performance and healthspan in mouse models of neurodegeneration. However, their translation for use in the clinic still holds several potential challenges. This review summarizes available senolytics, their purported mode of action, and possible off-target effects. We also discuss possible alternative strategies that may help minimize potential side-effects associated with the senolytics approach.
Asunto(s)
Envejecimiento , Senescencia Celular , Enfermedades Neurodegenerativas , Senoterapéuticos/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Animales , Senescencia Celular/efectos de los fármacos , Senescencia Celular/fisiología , Humanos , Ratones , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Fenotipo Secretor Asociado a la Senescencia/efectos de los fármacosRESUMEN
Emerging evidence indicates that cellular senescence could be a critical inducing factor for aging-associated neurodegenerative disorders. However, the involvement of cellular senescence remains unclear in Parkinson's disease (PD). To determine this, we assessed the effects of α-synuclein preformed fibrils (α-syn PFF) or 1-methyl-4-phenylpyridinium (MPP+) on changes in cellular senescence markers, employing α-syn PFF treated-dopaminergic N27 cells, primary cortical neurons, astrocytes and microglia and α-syn PFF-injected mouse brain tissues, as well as human PD patient brains. Our results demonstrate that α-syn PFF-induced toxicity reduces the levels of Lamin B1 and HMGB1, both established markers of cellular senescence, in correlation with an increase in the levels of p21, a cell cycle-arrester and senescence marker, in both reactive astrocytes and microglia in mouse brains. Using Western blot and immunohistochemistry, we found these cellular senescence markers in reactive astrocytes as indicated by enlarged cell bodies within GFAP-positive cells and Iba1-positive activated microglia in α-syn PFF injected mouse brains. These results indicate that PFF-induced pathology could lead to astrocyte and/or microglia senescence in PD brains, which may contribute to neuropathology in this model. Targeting senescent cells using senolytics could therefore constitute a viable therapeutic option for the treatment of PD.
Asunto(s)
Senescencia Celular , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , 1-Metil-4-fenilpiridinio , Animales , Astrocitos/metabolismo , Astrocitos/patología , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína HMGB1/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Lamina Tipo B/metabolismo , Masculino , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , Cambios Post Mortem , RatasRESUMEN
The mechanistic target of rapamycin (mTOR) has gathered significant attention as a ubiquitously expressed multimeric kinase with key implications for cell growth, proliferation, and survival. This kinase forms the central core of two distinct complexes, mTORC1 and mTORC2, which share the ability of integrating environmental, nutritional, and hormonal cues but which regulate separate molecular pathways that result in different cellular responses. Particularly, mTORC1 has been described as a major negative regulator of endosomal biogenesis and autophagy, a catabolic process that degrades intracellular components and organelles within the lysosomes and is thought to play a key role in human health and disease. In contrast, the role of mTORC2 in the regulation of autophagy has been considerably less studied despite mounting evidence this complex may regulate autophagy in a different and perhaps complementary manner to that of mTORC1. Genetic ablation of unique subunits is currently being utilized to study the differential effects of the two mTOR complexes. RICTOR is the best-described subunit specific to mTORC2 and as such has become a useful tool for investigating the specific actions of this complex. The development of complex-specific inhibitors for mTORC2 is also an area of intense interest. Studies to date have demonstrated that mTORC1/2 complexes each signal to a variety of exclusive downstream molecules with distinct biological roles. Pinpointing the particular effects of these downstream effectors is crucial toward the development of novel therapies aimed at accurately modulating autophagy in the context of human aging and disease.
Asunto(s)
Autofagia/inmunología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , HumanosRESUMEN
Exercise has been historically recommended to prevent many disease conditions. Intense exercise in particular, has been shown to be beneficial for Parkinson's disease (PD) - stopping and even reversing symptoms in some patients. Recent research in mammalian animal models of Parkinson's have shown that exercise affects âº-synuclein aggregate species, considered to be a hallmark of PD. However, the exact changes in native âº-synuclein protein species after exercise and the downstream effects of exercise upon the health of the animals remains unclear. Recently, it was shown that swimming constitutes a form of exercise in C. elegans worms that confers a protective effect in several worm models of tau and Huntington protein neurodegeneration. Here we show that a period of swimming exercise (Ex) - 15-20 mins - dramatically reduces several native human âº-synuclein protein species in the NL5901 C. elegans worm model of Parkinson's. Exercise on Day 1 of adulthood was found to improve motor function measured by the thrashing rate of worms on Day 2 and Day 4 when compared to both control (untreated) and food restricted (FR) worms. Moreover, exercised worms show smaller âº-synuclein::YFP puncta than food restricted worms. Here we show that exercise reduces native human âº-synuclein levels independent of food restriction in C. elegans.
RESUMEN
Aging is characterized by systemic declines in tissue and organ functions. Interventions that slow these declines represent promising therapeutics to protect against age-related disease and improve the quality of life. In this study, several interventions associated with lifespan extension in invertebrates or improvement of age-related disease were tested in mouse models to determine if they were effective in slowing tissue aging in a broad spectrum of functional assays. Benzoxazole, which extends the lifespan of Caenorhabditis elegans, slowed age-related femoral bone loss in mice. Rates of change were established for clinically significant parameters in untreated mice, including kyphosis, blood glucose, body composition, activity, metabolic measures, and detailed parameters of skeletal aging in bone. These findings have implications for the study of preclinical physiological aging and therapies targeting aging. Finally, an online application was created that includes the calculated rates of change and that enables power and variance to be calculated for many clinically important metrics of aging with an emphasis on bone. This resource will help in future study designs employing novel interventions in aging mice. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
RESUMEN
We and others have shown that the aging process results in a proteome-wide accumulation of insoluble proteins. Knocking down genes encoding the insoluble proteins over 40% of the time results in an extension of the lifespan in C. elegans, suggesting that many of these proteins are key determinants of the aging process. Isolation and quantitative identification of these insoluble proteins are crucial to understand key biological processes that occur during aging. Here, we present a modified and improved protocol that details how to extract and isolate the SDS-insoluble proteins (insolublome) from C. elegans more efficiently to streamline mass spectrometric workflows via a novel label-free quantitative proteomics analysis. This improved protocol utilizes a highly efficient sonicator for worm lysis that greatly increases efficiency for protein extraction and allows us to use significantly less starting material (approximately 3,000 worms) than in previous protocols (typically using at least 40,000 worms). Subsequent quantitative proteomic analysis of the insolublome was performed using data-dependent acquisition (DDA) for protein discovery and identification and data-independent acquisition (DIA) for comprehensive and more accurate protein quantification. Bioinformatic analysis of quantified proteins provides potential candidates that can be easily followed up with other molecular methods in C. elegans. With this workflow, we routinely identify more than 1000 proteins and quantify more than 500 proteins. This new protocol enables efficient compound screening with C. elegans. Here, we validated and applied this improved protocol to wild-type C. elegans N2-Bristol strain and confirmed that aged day-10 N2 worms showed greater accumulation of the insolublome than day-2 young worms.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Agregado de Proteínas , Proteoma/análisis , Proteómica/métodos , Envejecimiento , Animales , Caenorhabditis elegans/embriología , Longevidad , Flujo de TrabajoRESUMEN
Due to their postmitotic status, the potential for neurons to undergo senescence has historically received little attention. This lack of attention has extended to some non-postmitotic cells as well. Recently, the study of senescence within the central nervous system (CNS) has begun to emerge as a new etiological framework for neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The presence of senescent cells is known to be deleterious to non-senescent neighboring cells via development of a senescence-associated secretory phenotype (SASP) which includes the release of inflammatory, oxidative, mitogenic, and matrix-degrading factors. Senescence and the SASP have recently been hailed as an alternative to the amyloid cascade hypothesis and the selective killing of senescence cells by senolytic drugs as a substitute for amyloid beta (Aß) targeting antibodies. Here we call for caution in rejecting the amyloid cascade hypothesis and to the dismissal of Aß antibody intervention at least in early disease stages, as Aß oligomers (AßO), and cellular senescence may be inextricably linked. We will review literature that portrays AßO as a stressor capable of inducing senescence. We will discuss research on the potential role of secondary senescence, a process by which senescent cells induce senescence in neighboring cells, in disease progression. Once this seed of senescent cells is present, the elimination of senescence-inducing stressors like Aß would likely be ineffective in abrogating the spread of senescence. This has potential implications for when and why AßO clearance may or may not be effective as a therapeutic for AD. The selective killing of senescent cells by the immune system via immune surveillance naturally curtails the SASP and secondary senescence outside the CNS. Immune privilege restricts the access of peripheral immune cells to the brain parenchyma, making the brain a safe harbor for the spread of senescence and the SASP. However, an increasingly leaky blood brain barrier (BBB) compromises immune privilege in aging AD patients, potentially enabling immune infiltration that could have detrimental consequences in later AD stages. Rather than an alternative etiology, senescence itself may constitute an essential component of the cascade in the amyloid cascade hypothesis.