Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Immunol ; 212(2): 271-283, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37982696

RESUMEN

Highly self-reactive T cells are censored from the repertoire by both central and peripheral tolerance mechanisms upon receipt of high-affinity TCR signals. Clonal deletion is considered a major driver of central tolerance; however, other mechanisms such as induction of regulatory T cells and functional impairment have been described. An understanding of the interplay between these different central tolerance mechanisms is still lacking. We previously showed that impaired clonal deletion to a model tissue-restricted Ag did not compromise tolerance. In this study, we determined that murine T cells that failed clonal deletion were rendered functionally impaired in the thymus. Programmed cell death protein 1 (PD-1) was induced in the thymus and was required to establish cell-intrinsic tolerance to tissue-restricted Ag in CD8+ thymocytes independently of clonal deletion. In bone marrow chimeras, tolerance was not observed in PD-L1-deficient recipients, but tolerance was largely maintained following adoptive transfer of tolerant thymocytes or T cells to PD-L1-deficient recipients. However, CRISPR-mediated ablation of PD-1 in tolerant T cells resulted in broken tolerance, suggesting different PD-1 signaling requirements for establishing versus maintaining tolerance. Finally, we showed that chronic exposure to high-affinity Ag supported the long-term maintenance of tolerance. Taken together, our study identifies a critical role for PD-1 in establishing central tolerance in autoreactive T cells that escape clonal deletion. It also sheds light on potential mechanisms of action of anti-PD-1 pathway immune checkpoint blockade and the development of immune-related adverse events.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Ratones , Animales , Receptor de Muerte Celular Programada 1/genética , Tolerancia Central , Linfocitos T CD8-positivos , Timo , Antígenos , Tolerancia Inmunológica
2.
Scand J Immunol ; 98(3): e13311, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38112131

RESUMEN

This is a report from a one-week workshop held in Athens, Greece in July of 2022. The workshop aimed to identify emerging concepts relevant to the fundamentals of immune regulation and areas for future research. Theories of immune regulation emphasize the role of T cell help or co-stimulation (signal 2). The workshop participants considered how new data on the characteristics of agonist antigens, the role of the antigen receptor signals (signal 1) in driving fate decisions, the effect of energetics on immunity and a better understanding of class-control in the immune response, may impact theories of immune regulation. These ideas were discussed in the context of tumour immunology, autoimmunity, pregnancy and transplantation. Here we present the discussions as a narrative of different viewpoints to allow the reader to join the conversation. These discussions highlight the evolving understanding of the nature of specific antigen recognition and how both antigen-specific and non-specific mechanisms impact immune responses.


Asunto(s)
Antígenos , Linfocitos T , Humanos , Autoinmunidad
3.
Pharmaceutics ; 15(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37765170

RESUMEN

One strategy to prevent islet rejection is to create a favorable immune-protective local environment at the transplant site. Herein, we utilize localized cyclosporine A (CsA) delivery to islet grafts via poly(lactic-co-glycolic acid) (PLGA) microparticles to attenuate allograft rejection. CsA-eluting PLGA microparticles were prepared using a single emulsion (oil-in-water) solvent evaporation technique. CsA microparticles alone significantly delayed islet allograft rejection compared to islets alone (p < 0.05). Over 50% (6/11) of recipients receiving CsA microparticles and short-term cytotoxic T lymphocyte-associated antigen 4-Ig (CTLA4-Ig) therapy displayed prolonged allograft survival for 214 days, compared to 25% (2/8) receiving CTLA4-Ig alone. CsA microparticles alone and CsA microparticles + CTLA4-Ig islet allografts exhibited reduced T-cell (CD4+ and CD8+ cells, p < 0.001) and macrophage (CD68+ cells, p < 0.001) infiltration compared to islets alone. We observed the reduced mRNA expression of proinflammatory cytokines (IL-6, IL-10, INF-γ, and TNF-α; p < 0.05) and chemokines (CCL2, CCL5, CCL22, and CXCL10; p < 0.05) in CsA microparticles + CTLA4-Ig allografts compared to islets alone. Long-term islet allografts contained insulin+ and intra-graft FoxP3+ T regulatory cells. The rapid rejection of third-party skin grafts (C3H) in islet allograft recipients suggests that CsA microparticles + CTLA4-Ig therapy induced operational tolerance. This study demonstrates that localized CsA drug delivery plus short-course systemic immunosuppression promotes an immune protective transplant niche for allogeneic islets.

4.
Cell Rep ; 42(6): 112583, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37267106

RESUMEN

Upon antigen-specific T cell receptor (TCR) engagement, human CD4+ T cells proliferate and differentiate, a process associated with rapid transcriptional changes and metabolic reprogramming. Here, we show that the generation of extramitochondrial pyruvate is an important step for acetyl-CoA production and subsequent H3K27ac-mediated remodeling of histone acetylation. Histone modification, transcriptomic, and carbon tracing analyses of pyruvate dehydrogenase (PDH)-deficient T cells show PDH-dependent acetyl-CoA generation as a rate-limiting step during T activation. Furthermore, T cell activation results in the nuclear translocation of PDH and its association with both the p300 acetyltransferase and histone H3K27ac. These data support the tight integration of metabolic and histone-modifying enzymes, allowing metabolic reprogramming to fuel CD4+ T cell activation. Targeting this pathway may provide a therapeutic approach to specifically regulate antigen-driven T cell activation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Histonas , Humanos , Histonas/metabolismo , Acetilcoenzima A/metabolismo , Linfocitos T CD4-Positivos/metabolismo
5.
Am J Transplant ; 23(2): 202-213, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36804130

RESUMEN

Heart transplant and recipient survival are limited by immune cell-mediated injury of the graft vasculature. We examined the role of the phosphoinositide 3-kinase-ß (PI3Kß) isoform in endothelial cells (EC) during coronary vascular immune injury and repair in mice. In minor histocompatibility-antigen mismatched allogeneic heart grafts, a robust immune response was mounted to each wild-type, PI3Kß inhibitor-treated, or endothelial-selective PI3Kß knockout (ECßKO) graft transplanted to wild-type recipients. However, microvascular EC loss and progressive occlusive vasculopathy only developed in control, but not PI3Kß-inactivated hearts. We observed a delay in inflammatory cell infiltration of the ECßKO grafts, particularly in the coronary arteries. Surprisingly, this was accompanied by an impaired display of proinflammatory chemokine and adhesion molecules by the ECßKO ECs. In vitro, tumor necrosis factor α-stimulated endothelial ICAM1 and VCAM1 expression was blocked by PI3Kß inhibition or RNA interference. Selective PI3Kß inhibition also blocked tumor necrosis factor α-stimulated degradation of inhibitor of nuclear factor kappa Bα and nuclear translocation of nuclear factor kappa B p65 in EC. These data identify PI3Kß as a therapeutic target to reduce vascular inflammation and injury.


Asunto(s)
Células Endoteliales , Lesiones del Sistema Vascular , Ratones , Animales , Células Endoteliales/patología , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Lesiones del Sistema Vascular/patología , Factor de Necrosis Tumoral alfa
6.
Cell Transplant ; 31: 9636897221136149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36367048

RESUMEN

CD8 T cells play a key role in cancer immunotherapy and allograft rejection. However, it is not clear how they kill cells and tissues that do not have the agonist peptide-major histocompatibility complex (MHC) on their surface, as in the settings of MHC class I deficient tumors and indirect rejection of MHC-mismatched transplants. CD8 T cells might respond to agonist antigen cross-presented on hematopoietic cells, leading to a "bystander" rejection. Alternatively, they may recognize agonist antigen cross-presented on recipient endothelial cells and kill the tissue's vital blood supply. The latter mechanism predicts that all non-vascularized grafts, grafts dependent on in-growth of recipient blood vessels, will be susceptible to CD8 T cell mediated indirect rejection. In contrast, we show here that non-vascularized transplants, bearing the same agonist antigen, are not universally susceptible to this rejection pathway. Non-vascularized skin, but not islet or heart tissue transplants were indirectly rejected by CD8 T cells. Furthermore, CD8 T cells were able to indirectly reject skin grafts when recipient MHC class I expression was restricted to bone marrow derived cells but not when it was restricted to radioresistant cells (e.g. endothelial cells). These findings argue against a major role for endothelial cell cross-presentation in killing of tissue that does not present the agonist peptide-MHC class I. Instead, the data suggests that cross-presentation by recipient hematopoietic cells underlies the CD8 T cell mediated killing of tissue that is unable to directly present the target peptide-MHC class I.


Asunto(s)
Médula Ósea , Células Endoteliales , Trasplante Homólogo , Rechazo de Injerto , Linfocitos T CD8-positivos , Complejo Mayor de Histocompatibilidad , Antígenos de Histocompatibilidad Clase I , Péptidos , Linfocitos T CD4-Positivos
7.
Curr Res Immunol ; 3: 37-41, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496821

RESUMEN

Anti-CD52 treatment creates a long-lasting CD4 T cell lymphopenia and reduces multiple sclerosis (MS) relapses in humans. In contrast, anti-CD52 therapy at disease onset more fully suppresses experimental autoimmune encephalomyelitis (EAE) in mice, and T cell repopulation is rapid. To test whether prolonged T cell lymphopenia promotes relapses, we thymectomized mice prior to EAE induction and anti-CD52 treatment. Thymectomy greatly reduced the number of recent thymic emigrant T cells and was associated with a prolonged reduction in CD4 T cells in peripheral blood. Two-thirds of thymectomized C57BL/6 mice had an EAE relapse post anti-CD52 treatment, while no surgery and sham surgery euthymic controls remained relapse-free. These data demonstrate that thymus function can alter the effectiveness of anti-CD52 treatment.

8.
Free Radic Biol Med ; 186: 32-42, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537597

RESUMEN

The ubiquity of cognitive deficits and early onset Alzheimer's disease in Down syndrome (DS) has focused much DS iPSC-based research on neuron degeneration and regeneration. Despite reports of elevated oxidative stress in DS brains, few studies assess the impact of this oxidative burden on iPSC differentiation. Here, we evaluate cellular specific redox differences in DS and euploid iPSCs and neural progenitor cells (NPCs) during critical intermediate stages of differentiation. Despite successful generation of NPCs, our results indicate accelerated neuroectodermal differentiation of DS iPSCs compared to isogenic, euploid controls. Specifically, DS embryoid bodies (EBs) and neural rosettes prematurely develop with distinct morphological differences from controls. Additionally, we observed developmental stage-specific alterations in mitochondrial superoxide production and SOD1/2 abundance, coupled with modulations in thioredoxin, thioredoxin reductase, and peroxiredoxin isoforms. Disruption of intracellular redox state and its associated signaling has the potential to disrupt cellular differentiation and development in DS lending to DS-specific phenotypes.


Asunto(s)
Síndrome de Down , Células Madre Pluripotentes Inducidas , Diferenciación Celular/genética , Células Cultivadas , Síndrome de Down/genética , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Estrés Oxidativo
9.
Semin Cancer Biol ; 78: 5-16, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33582171

RESUMEN

Disseminated non-dividing (dormant) cancer cells as well as those in equilibrium with the immune response remain the major challenge for successful treatment of cancer. The equilibrium between disseminated dormant cancer cells and the immune system is reminiscent of states that can occur during infection or allogeneic tissue and cell transplantation. We discuss here the major competing models of how the immune system achieves a self nonself discrimination (pathogen/danger patterns, quorum, and coinhibition/tuning models), and suggest that taking advantage of a combination of the proposed mechanisms in each model may lead to increased efficacy in tackling cancer cell dormancy.


Asunto(s)
Susceptibilidad a Enfermedades , Modelos Biológicos , Neoplasias/etiología , Neoplasias/metabolismo , Microambiente Tumoral , Manejo de la Enfermedad , Susceptibilidad a Enfermedades/inmunología , Humanos , Sistema Inmunológico , Técnicas de Diagnóstico Molecular , Neoplasias/diagnóstico , Trasplante/efectos adversos , Trasplante/métodos
10.
J Immunol ; 207(11): 2637-2648, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34732470

RESUMEN

Mast cells are important effector cells in the immune system and undergo activation (i.e., degranulation) by two major mechanisms: IgE-mediated and non-IgE-mediated mechanisms. Although IgE-mediated degranulation is well researched, the cellular mechanisms of non-IgE-mediated mast cell activation are poorly understood despite the potential to induce similar pathophysiological effects. To better understand non-IgE mast cell degranulation, we characterized and compared cellular metabolic shifts across several mechanisms of degranulation (allergen-induced [IgE-mediated], 20 nm of silver nanoparticle-mediated [non-IgE], and compound 48/80-mediated [non-IgE]) in murine bone marrow-derived mast cells. All treatments differentially impacted mitochondrial activity and glucose uptake, suggesting diverging metabolic pathways between IgE- and non-IgE-mediated degranulation. Non-IgE treatments depleted mast cells' glycolytic reserve, and compound 48/80 further inhibited the ability to maximize mitochondrial respiration. This cellular reprogramming may be indicative of a stress response with non-IgE treatments. Neither of these outcomes occurred with IgE-mediated degranulation, hinting at a separate programmed response. Fuel flexibility between the three primary mitochondrial nutrient sources was also eliminated in activated cells and this was most significant in non-IgE-mediated degranulation. Lastly, metabolomics analysis of bone marrow-derived mast cells following degranulation was used to compare general metabolite profiles related to energetic pathways. IgE-mediated degranulation upregulated metabolite concentrations for the TCA cycle and glycolysis compared with other treatments. In conclusion, mast cell metabolism varies significantly between IgE- and non-IgE-mediated degranulation suggesting novel cell regulatory mechanisms are potentially driving unexplored pathways of mast cell degranulation.


Asunto(s)
Inmunoglobulina E/metabolismo , Mastocitos/metabolismo , Animales , Células Cultivadas , Inmunoglobulina E/inmunología , Mastocitos/inmunología , Ratones , Ratones Endogámicos C57BL
11.
Free Radic Biol Med ; 172: 201-212, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34129926

RESUMEN

Down syndrome (DS) is the most common genetic cause of intellectual disability. Mechanistically, oxidative stress and mitochondrial dysfunction are reported to be etiological factors for many of the DS-related comorbidities and have previously been reported in a number of in vitro and in vivo models of DS. The purpose of this study was to test for the presence of mitochondrial dysfunction in fibroblast cells obtained via skin biopsy from individuals with DS, and to assess the impact of trisomy 21 on central carbon metabolism. Using extracellular flux assays in matched dermal fibroblasts from euploid and DS individuals, we found that basal mitochondrial dysfunction is quite mild. Stressing the cells with a cocktail of mitochondrial stressors revealed a significant mitochondrial deficit in DS cells compared to euploid controls. Evaluation of extracellular acidification rate did not reveal a baseline abnormality in glycolysis; however, metabolomic assessments utilizing isotopically labeled glucose and glutamine revealed altered central carbon metabolism in DS cells. Specifically, we observed greater glucose dependency, uptake and flux into the oxidative phase of the pentose phosphate pathway in DS fibroblasts. Furthermore, using induced pluripotent stem cells (iPSC) we found that mitochondrial function in DS iPSCs was similar to the previously published studies employing fetal cells. Together, these data indicate that aberrant central carbon metabolism is a candidate mechanism for stress-related mitochondrial dysfunction in DS.


Asunto(s)
Síndrome de Down , Células Madre Pluripotentes Inducidas , Carbono/metabolismo , Células Cultivadas , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias
12.
Immunol Cell Biol ; 99(6): 656-667, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33534942

RESUMEN

Type 1 diabetes in non-obese diabetic (NOD) mice occurs when autoreactive T cells eliminate insulin producing pancreatic ß cells. While extensively studied in T-cell receptor (TCR) transgenic mice, the contribution of alterations in thymic selection to the polyclonal T-cell pool in NOD mice is not yet resolved. The magnitude of signals downstream of TCR engagement with self-peptide directs the development of a functional T-cell pool, in part by ensuring tolerance to self. TCR interactions with self-peptide are also necessary for T-cell homeostasis in the peripheral lymphoid organs. To identify differences in TCR signal strength that accompany thymic selection and peripheral T-cell maintenance, we compared CD5 levels, a marker of basal TCR signal strength, on immature and mature T cells from autoimmune diabetes-prone NOD and -resistant B6 mice. The data suggest that there is no preferential selection of NOD thymocytes that perceive stronger TCR signals from self-peptide engagement. Instead, NOD mice have an MHC-dependent increase in CD4+ thymocytes and mature T cells that express lower levels of CD5. In contrast, T cell-intrinsic mechanisms lead to higher levels of CD5 on peripheral CD8+ T cells from NOD relative to B6 mice, suggesting that peripheral CD8+ T cells with higher basal TCR signals may have survival advantages in NOD mice. These differences in the T-cell pool in NOD mice may contribute to the development or progression of autoimmune diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animales , Antígenos CD5 , Linfocitos T CD8-positivos , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T , Transducción de Señal , Timo
13.
Prostaglandins Other Lipid Mediat ; 153: 106524, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33418267

RESUMEN

The triplication of human chromosome 21 results in Down syndrome (DS), the most common genetic form of intellectual disability. This aneuploid condition also results in an enhanced risk of a spectrum of comorbid conditions, such as leukemia, early onset Alzheimer's disease, and diabetes. Individuals with DS also display an increased incidence of wound healing complications and resistance to solid tumor development. Due to this unique phenotype and the involvement of eicosanoids in key comorbidities like poor healing and tumor development, we hypothesized that cells from DS individuals would display altered eicosanoid production. Using age- and sex-matched dermal fibroblasts we interrogated this hypothesis. Briefly, assessment of over 90 metabolites derived from cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome p450 systems revealed a possible deficiency in the COX system. Basal gene expression and Western blotting experiments showed significantly decreased gene expression of COX1 and 2, and COX2 protein abundance in DS fibroblasts compared to euploid controls. Further, using two different stressors, scratch wound or LPS, we found that DS fibroblasts could not upregulate COX2 abundance and prostaglandin E2 production. Together, these findings show that dermal fibroblasts from DS individuals have a deficient COX2 response, which may contribute to wound healing complications and tumor resistance in DS.


Asunto(s)
Dinoprostona , Ciclooxigenasa 1 , Ciclooxigenasa 2/metabolismo , Síndrome de Down , Humanos
14.
Scand J Immunol ; 94(6): e13105, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35968825

RESUMEN

Peter Bretscher was the first to envision that the problem of self-nonself discrimination in the adaptive immune system could be solved by positing that antigen inactivates single lymphocytes, whereas antigen-mediated lymphocyte cooperation is required to stimulate their activation. These ideas led to a two-signal model for lymphocyte activation: an antigen-specific signal that when generated alone results in tolerance and the combination of two (or more) antigen-specific signals resulting in lymphocyte activation and immunity. This 'quorum model' is consistent with the concept known as the historical postulate that posits that the early life timing of antigen exposure is the key to self-tolerance. Bretscher proposes that the historical postulate is 'the basis, at level of the system, for self-nonself discrimination' and contends that the Danger model violates this postulate. Herein I argue that the data do not support putting the historical postulate alone at the top of the hierarchy of concepts underlying self-nonself discrimination. The location of antigen is at least as important because it determines whether central tolerance will be engaged. Location of antigen together with timing of antigen exposure are major factors determining whether quorum, the basis for self-nonself discrimination, is achieved.


Asunto(s)
Activación de Linfocitos , Autotolerancia , Antígenos , Sistema Inmunológico , Tolerancia Inmunológica
15.
Free Radic Biol Med ; 162: 65-76, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33279619

RESUMEN

The dithiocarbamate fungicide maneb (MB) has attracted interest due to increasing concern of the negative health effects of pesticides, as well as its association with Parkinson's disease (PD). Our laboratory has previously reported distinct phenotypic changes of neuroblastoma cells exposed to acute, sub-toxic levels of MB, including decreased mitochondrial respiration, altered lactate dynamics, and metabolic stress. In this study, we aimed to further define the specific molecular mechanisms of MB toxicity through the comparison of several thiol-containing compounds and their effects on cellular energy metabolism and thiol redox nodes. Extracellular flux analyses and stable isotope labeled tracer metabolomics were employed to evaluate alterations in energy metabolism of SK-N-AS human neuroblastoma cells after acute exposure of an array of compounds, including dithiocarbamates (maneb, nabam, zineb) and other thiol-containing small molecules (glutathione, N-acetylcysteine). These studies revealed MB and its methylated form (MeDTC) as unique toxicants with significant alterations to mitochondrial respiration, proliferation, and glycolysis. We observed MB to significantly impact cellular thiol redox status by oxidizing cellular glutathione and altering the thiol redox status of peroxiredoxin 3 (Prx3, mitochondrial) after acute exposure. Redox Western blotting revealed a MB-specific modification of cellular Prx3, strengthening the argument that MB can preferentially target mitochondrial enzymes containing reactive cysteine thiols. Further, stable isotope tracer metabolomics confirmed our energetics assessments, and demonstrated that MB exposure results in acute derangement of central carbon metabolism. Specifically, we observed shunting of cellular glucose into the pentose-phosphate pathway and reduction of TCA intermediates derived from glucose and glutamine. Also, we report novel lactate utilization for TCA enrichment and glutathione synthesis after MB exposure. In summary, our results further confirm that MB exerts its toxic effects via thiol modification, and significantly transforms central carbon metabolism.


Asunto(s)
Maneb , Enfermedad de Parkinson , Carbono , Humanos , Maneb/toxicidad , Oxidación-Reducción , Compuestos de Sulfhidrilo
16.
Toxicol Rep ; 7: 520-528, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32368502

RESUMEN

Statins have a primary indication for the reduction and management of hypercholesterolemia; however, evidence shows that statins have the ability to increase the toxicity of chemotherapeutics within cancer cells by inducing anti-proliferative, anti-metastatic, and anti-angiogenic effects. More recently, lipophilic statins have shown complex interaction with energy metabolism, specifically acute mitochondrial dysfunction and delayed inhibition of glycolysis. With the goal to demonstrate that statin-mediated enhancement of chemotherapeutics is time-dependent, we hypothesized that the lipophilic statin simvastatin, in conjunction with variable co-exposure of doxorubicin or cisplatin, will enhance the toxicity of these drugs in neuroblastoma. Utilizing human SK-N-AS neuroblastoma cells, we assessed cell proliferation, necrosis, caspase activation, and overall apoptosis of these cells. After determining the toxicity of simvastatin at 48 h post-treatment, 10µM was chosen as the intervention concentration. We found that significant cell death resulted from 1.0µM dose of doxorubicin with 24 h pre-treatment of simvastatin. On the other hand, simvastatin enhancement of cisplatin toxicity was only observed in the co-exposure model. As doxorubicin has strict dosage limits due to its primary off-target toxicity in cardiac muscle, we further compared the effects of this drug combination on rat H9C2 cardiomyoblasts. We found that simvastatin did not enhance doxorubicin toxicity in this cell line. We conclude that simvastatin provides time-dependent sensitization of neuroblastoma cells to doxorubicin toxicity, and our results provide strong argument for the consideration of simvastatin as an adjuvant in doxorubicin-based chemotherapy programs.

17.
Eur J Immunol ; 50(9): 1362-1373, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32388861

RESUMEN

Lymphocyte depletion using anti-CD52 antibody effectively reduces relapses of multiple sclerosis (MS). To begin to understand what mechanisms might control this outcome, we examined the effect of a murine-CD52-specific mAb on the depletion and repopulation of immune cells in mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We tested whether the tolerance-promoting receptor programmed cell death protein-1 (PD-1) is required for disease remission post anti-CD52, and found that PD-1-deficient mice with a more severe EAE were nevertheless effectively treated with anti-CD52. Anti-CD52 increased the proportions of newly generated T cells and double-negative (DN) T cells while reducing newly generated B cells; the latter effect being associated with a higher expression of CD52 by these cells. In the longer term, anti-CD52 caused substantial increases in the proportion of newly generated lymphocytes and DN T cells in mice with EAE. Thus, the rapid repopulation of lymphocytes from central lymphoid organs post anti-CD52 may limit further disease. Furthermore, these data identify DN T cells, a subset with immunoregulatory potential, as a significant hyperrepopulating subset following CD52-mediated depletion.


Asunto(s)
Linfocitos B/inmunología , Antígeno CD52/antagonistas & inhibidores , Encefalomielitis Autoinmune Experimental/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Alemtuzumab/farmacología , Animales , Antígeno CD52/inmunología , Ratones , Receptor de Muerte Celular Programada 1
18.
Scand J Immunol ; 91(6): e12888, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32281665

RESUMEN

We propose a framework to explain how T cells achieve specificity and sensitivity, how the affinity of the TcR peptide/MHC interaction controls positive and negative thymic selection and mature T cell survival, and whether antigen-dependent activation and inactivation takes place. Two distinct types of signalling can lead to mature T cell multiplication. One requires the TcR to recognize with a certain affinity an antigen-derived peptide, an agonist peptide, bound to an MHC molecule. The other, the tonic signal, leads to naïve T cell survival and modest proliferation if the T cell successfully competes for endogenous, self-peptide/MHC ligands, involving lower affinity TCR/ligand interactions. Many suggest lymphopenia contributes to autoimmunity by increasing the strength of TcR-tonic signalling, and so activation of anti-self T cells. We suggest T cell activation requires antigen-mediated cooperation between T cells. Increased tonic signalling under lymphopenic conditions facilitates T cell proliferation and so antigen-dependent cooperation and activation of anti-self T cells.


Asunto(s)
Linfopenia/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T , Linfocitos T/inmunología , Animales , Presentación de Antígeno , Autoantígenos/inmunología , Autoantígenos/metabolismo , Autoinmunidad , Comunicación Celular , Diferenciación Celular , Supervivencia Celular , Antígenos de Histocompatibilidad/metabolismo , Humanos , Activación de Linfocitos , Modelos Inmunológicos , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
19.
Cancer Immunol Immunother ; 69(5): 683-687, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32152702

RESUMEN

More than 2000 immuno-oncology agents are being tested or are in use as a result of the cancer immunotherapy revolution. Manipulation of co-inhibitory receptors has achieved tumor eradication in a minority of patients, but widespread immune-related adverse events (irAEs) compromised tolerance to healthy self-tissues in the majority. We have proposed that a major mechanism of irAEs is similar to a graft-versus-malignancy effect of graft-versus-host disease. To verify our hypothesis, we retrieved post-marketing data of adverse events from the U.S. Food and Drug Administration Adverse Event Reporting System. A significant positive correlation was revealed in 7677 patients between the reporting odds ratio of irAEs during immune checkpoint inhibitor therapy and the corresponding tumor mutational burden across 19 cancer types. These results can be interpreted to mean that the ICI drugs unleashed T cells against "altered-self," self, and tumors resulting in better overall survival.


Asunto(s)
Antineoplásicos Inmunológicos/efectos adversos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Neoplasias/tratamiento farmacológico , Autotolerancia/genética , Linfocitos T/efectos de los fármacos , Sistemas de Registro de Reacción Adversa a Medicamentos/estadística & datos numéricos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/inmunología , Humanos , Mutación , Neoplasias/genética , Neoplasias/inmunología , Autotolerancia/efectos de los fármacos , Linfocitos T/inmunología
20.
Am J Transplant ; 20(9): 2356-2365, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32185855

RESUMEN

Mixed hematopoietic chimerism induction as a way to foster tolerance to donor organs in recipients who have been sensitized to donor antigens is challenging. Donor-specific antibodies (DSA) are a dominant barrier toward successful donor bone marrow engraftment. Although desensitization methods are routinely used in recipients with allosensitization for allogeneic bone marrow transplantation, engraftment is frequently unsuccessful. To overcome the barrier of prior sensitization we tested enzymatic desensitization of donor-specific IgG using imlifidase and endoglycosidase of Streptococcus pyogenes (EndoS), which both partially block the function of DSA in mice, as a novel approach to improve murine bone marrow engraftment in primed hosts. We found that EndoS was capable of inhibiting antibody-mediated killing of donor cells in vivo. Furthermore, the effect of EndoS depended on the titer of DSA and the genetic background of the recipients. In combination with imlifidase, EndoS improved the survival of donor bone marrow cells. Together with cyclophosphamide, bortezomib, T cell depletion, and nonlethal irradiation, imlifidase in combination with EndoS allowed allogeneic bone marrow engraftment in sensitized recipients. We conclude that enzymatic inactivation of DSA, using the combination of imlifidase and EndoS, can be used for inducing donor hematopoietic chimerism in allosensitized recipient mice in combination with other desensitization strategies.


Asunto(s)
Quimerismo , Streptococcus pyogenes , Animales , Trasplante de Médula Ósea , Glicósido Hidrolasas , Tolerancia Inmunológica , Ratones , Ratones Endogámicos C57BL , Trasplante de Piel , Quimera por Trasplante , Trasplante Homólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA