Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 27(2): 108799, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318388

RESUMEN

Hippocampal pyramidal cells possess elaborate dendritic arbors with distinct domains that are targeted with input-specific synaptic sites. This synaptic arrangement is facilitated by synaptic cell-adhesion molecules that act as recognition elements to connect presynaptic and postsynaptic neurons. In this study, we investigate the organization of the synaptic recognition molecule latrophilin-2 at the surface of pyramidal neurons classified by spatial positioning and action potential firing patterns. Surveying two hippocampal neurons that highly express latrophilin-2, late-bursting CA1 pyramidal cells and early-bursting subiculum pyramidal cells, we found the molecule to be differentially positioned on their respective dendritic compartments. Investigating this latrophilin-2 positioning at the synaptic level, we found that the molecule is not present within either the pre- or postsynaptic terminal but rather is tightly coupled to synapses at a perisynaptic location. Together these findings indicate that hippocampal latrophilin-2 distribution patterning is cell-type specific, and requires multiple postsynaptic neurons for its synaptic localization.

2.
Cell Rep ; 37(8): 110031, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818557

RESUMEN

Brain circuits are comprised of distinct interconnected neurons that are assembled by synaptic recognition molecules presented by defined pre- and post-synaptic neurons. This cell-cell recognition process is mediated by varying cellular adhesion molecules, including the latrophilin family of adhesion G-protein-coupled receptors. Focusing on parahippocampal circuitry, we find that latrophilin-2 (Lphn2; gene symbol ADGRL2) is specifically enriched in interconnected subregions of the medial entorhinal cortex (MEC), presubiculum (PrS), and parasubiculum (PaS). Retrograde viral tracing from the Lphn2-enriched region of the MEC reveals unique topographical patterning of inputs arising from the PrS and PaS that mirrors Lphn2 expression. Using a Lphn2 conditional knockout mouse model, we find that deletion of MEC Lphn2 expression selectively impairs retrograde viral labeling of inputs arising from the ipsilateral PrS. Combined with analysis of Lphn2 expression within the MEC, this study reveals Lphn2 to be selectively expressed by defined cell types and essential for MEC-PrS circuit connectivity.


Asunto(s)
Corteza Entorrinal/fisiología , Receptores de Péptidos/genética , Animales , Corteza Entorrinal/metabolismo , Femenino , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Hipocampo/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/citología , Neuronas/fisiología , Giro Parahipocampal/metabolismo , Receptores de Péptidos/metabolismo
3.
Ann N Y Acad Sci ; 1456(1): 5-25, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31168816

RESUMEN

The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. In this workshop report, we review the most recent findings on the biology, signaling mechanisms, and physiological functions of aGPCRs.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Humanos , Receptores Acoplados a Proteínas G/química
4.
J Neurosci ; 38(32): 7120-7131, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30006367

RESUMEN

In the striatum, medium spiny neurons (MSNs) are heavily involved in controlling movement and reward. MSNs form two distinct populations expressing either dopamine receptor 1 (D1-MSN) or dopamine receptor 2 (D2-MSN), which differ in their projection targets and neurochemical composition. The activity of both types of MSNs is shaped by multiple neuromodulatory inputs processed by GPCRs that fundamentally impact their synaptic properties biasing behavioral outcomes. How these GPCR signaling cascades are regulated and what downstream targets they recruit in D1-MSN and D2-MSN populations are incompletely understood. In this study, we examined the cellular and molecular mechanisms underlying the action of RGS9-2, a key GPCR regulator in MSNs implicated in both movement control and actions of addictive drugs. Imaging cultured striatal neurons, we found that ablation of RGS9-2 significantly reduced calcium influx through NMDARs. Electrophysiological recordings in slices confirmed inhibition of NMDAR function in MSNs, resulting in enhanced AMPAR/NMDAR ratio. Accordingly, male mice lacking RGS9-2 displayed behavioral hypersensitivity to NMDAR blockade by MK-801 or ketamine. Recordings from genetically identified populations of striatal neurons revealed that these changes were selective to D2-MSNs. Surprisingly, we found that these postsynaptic effects resulted in remodeling of presynaptic inputs to D2-MSNs increasing the frequency of mEPSC and inhibiting paired-pulse ratio. Pharmacological dissection revealed that these adaptations were mediated by the NMDAR-dependent inhibition of retrograde endocannabinoid signaling from D2-MSNs to CB1 receptor on presynaptic terminals. Together, these data demonstrate a novel mechanism for pathway selective regulation of synaptic plasticity in MSNs controlled by GPCR signaling.SIGNIFICANCE STATEMENT This study identifies a role for a major G-protein regulator in controlling synaptic properties of striatal neurons in a pathway selective fashion.


Asunto(s)
Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/fisiología , Proteínas RGS/fisiología , Transmisión Sináptica/fisiología , Animales , Señalización del Calcio , Células Cultivadas , Cuerpo Estriado/citología , Neuronas Dopaminérgicas/química , Neuronas Dopaminérgicas/clasificación , Neuronas Dopaminérgicas/efectos de los fármacos , Endocannabinoides/fisiología , Conducta Exploratoria , Femenino , Genes Reporteros , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , Proteínas RGS/deficiencia , Proteínas RGS/genética , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/fisiología , Receptores de Dopamina D2/análisis , Receptores de Dopamina D2/genética , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Sinapsis/fisiología
5.
J Cell Biol ; 216(11): 3831-3846, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28972101

RESUMEN

Synapse assembly likely requires postsynaptic target recognition by incoming presynaptic afferents. Using newly generated conditional knock-in and knockout mice, we show in this study that latrophilin-2 (Lphn2), a cell-adhesion G protein-coupled receptor and presumptive α-latrotoxin receptor, controls the numbers of a specific subset of synapses in CA1-region hippocampal neurons, suggesting that Lphn2 acts as a synaptic target-recognition molecule. In cultured hippocampal neurons, Lphn2 maintained synapse numbers via a postsynaptic instead of a presynaptic mechanism, which was surprising given its presumptive role as an α-latrotoxin receptor. In CA1-region neurons in vivo, Lphn2 was specifically targeted to dendritic spines in the stratum lacunosum-moleculare, which form synapses with presynaptic entorhinal cortex afferents. In this study, postsynaptic deletion of Lphn2 selectively decreased spine numbers and impaired synaptic inputs from entorhinal but not Schaffer-collateral afferents. Behaviorally, loss of Lphn2 from the CA1 region increased spatial memory retention but decreased learning of sequential spatial memory tasks. Thus, Lphn2 appears to control synapse numbers in the entorhinal cortex/CA1 region circuit by acting as a domain-specific postsynaptic target-recognition molecule.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Corteza Entorrinal/metabolismo , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Membranas Sinápticas/metabolismo , Animales , Conducta Animal , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiopatología , Células Cultivadas , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Corteza Entorrinal/patología , Corteza Entorrinal/fisiopatología , Miedo , Genotipo , Aprendizaje por Laberinto , Memoria , Ratones Mutantes , Actividad Motora , Neuronas/patología , Fenotipo , Terminales Presinápticos/patología , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Prueba de Desempeño de Rotación con Aceleración Constante , Olfato , Membranas Sinápticas/patología , Potenciales Sinápticos , Factores de Tiempo , Transfección
6.
Cell ; 162(3): 593-606, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26213384

RESUMEN

α- and ß-neurexins are presynaptic cell-adhesion molecules implicated in autism and schizophrenia. We find that, although ß-neurexins are expressed at much lower levels than α-neurexins, conditional knockout of ß-neurexins with continued expression of α-neurexins dramatically decreased neurotransmitter release at excitatory synapses in cultured cortical neurons. The ß-neurexin knockout phenotype was attenuated by CB1-receptor inhibition, which blocks presynaptic endocannabinoid signaling, or by 2-arachidonoylglycerol synthesis inhibition, which impairs postsynaptic endocannabinoid release. In synapses formed by CA1-region pyramidal neurons onto burst-firing subiculum neurons, presynaptic in vivo knockout of ß-neurexins aggravated endocannabinoid-mediated inhibition of synaptic transmission and blocked LTP; presynaptic CB1-receptor antagonists or postsynaptic 2-arachidonoylglycerol synthesis inhibition again reversed this block. Moreover, conditional knockout of ß-neurexins in CA1-region neurons impaired contextual fear memories. Thus, our data suggest that presynaptic ß-neurexins control synaptic strength in excitatory synapses by regulating postsynaptic 2-arachidonoylglycerol synthesis, revealing an unexpected role for ß-neurexins in the endocannabinoid-dependent regulation of neural circuits.


Asunto(s)
Endocannabinoides/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Vías Nerviosas/metabolismo , Sinapsis/metabolismo , Animales , Ácidos Araquidónicos/biosíntesis , Calcio/metabolismo , Proteínas de Unión al Calcio , Endocannabinoides/biosíntesis , Glicéridos/biosíntesis , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/genética , Neuronas/metabolismo , Neurotransmisores/metabolismo , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 109(44): 18120-5, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23074245

RESUMEN

Mutations in the contactin-associated protein 2 (CNTNAP2) gene encoding CASPR2, a neurexin-related cell-adhesion molecule, predispose to autism, but the function of CASPR2 in neural circuit assembly remains largely unknown. In a knockdown survey of autism candidate genes, we found that CASPR2 is required for normal development of neural networks. RNAi-mediated knockdown of CASPR2 produced a cell-autonomous decrease in dendritic arborization and spine development in pyramidal neurons, leading to a global decline in excitatory and inhibitory synapse numbers and a decrease in synaptic transmission without a detectable change in the properties of these synapses. Our data suggest that in addition to the previously described role of CASPR2 in mature neurons, where CASPR2 organizes nodal microdomains of myelinated axons, CASPR2 performs an earlier organizational function in developing neurons that is essential for neural circuit assembly and operates coincident with the time of autism spectrum disorder (ASD) pathogenesis.


Asunto(s)
Trastorno Autístico/genética , Células Dendríticas/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Técnicas de Silenciamiento del Gen , Humanos , Red Nerviosa , Interferencia de ARN
8.
J Neurosci ; 30(8): 3072-81, 2010 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-20181604

RESUMEN

At hippocampal excitatory synapses, endocannabinoids (eCBs) mediate two forms of retrograde synaptic inhibition that are induced by postsynaptic depolarization or activation of metabotropic glutamate receptors (mGluRs). The homer family of molecular scaffolds provides spatial organization to regulate postsynaptic signaling cascades, including those activated by mGluRs. Expression of the homer 1a (H1a) immediate-early gene produces a short homer protein that lacks the domain required for homer oligomerization, enabling it to uncouple homer assemblies. Here, we report that H1a differentially modulates two forms of eCB-mediated synaptic plasticity, depolarization-induced suppression of excitation (DSE) and metabotropic suppression of excitation (MSE). EPSCs were recorded from cultured hippocampal neurons and DSE evoked by a 15 s depolarization to 0 mV and MSE evoked by a type I mGluR agonist. Expression of H1a enhanced DSE and inhibited MSE at the same synapse. Many physiologically important stimuli initiate H1a expression including brain-derived neurotrophic factor (BDNF). Treating hippocampal cultures with BDNF increased transcription of H1a and uncoupled homer 1c-GFP (green fluorescent protein) clusters. BDNF treatment blocked MSE and enhanced DSE. Thus, physiological changes in H1a expression gate the induction pathway for eCB-mediated synaptic plasticity by uncoupling mGluR from eCB production.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Proteínas Portadoras/metabolismo , Endocannabinoides , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Proteínas Portadoras/genética , Células Cultivadas , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Hipocampo/efectos de los fármacos , Proteínas de Andamiaje Homer , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Recombinantes de Fusión/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
9.
Neuropsychopharmacology ; 35(4): 1040-50, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20043004

RESUMEN

In the striatum, signaling through G protein-coupled dopamine receptors mediates motor and reward behavior, and underlies the effects of addictive drugs. The extent of receptor responses is determined by RGS9-2/Gbeta5 complexes, a striatally enriched regulator that limits the lifetime of activated G proteins. Recent studies suggest that the function of RGS9-2/Gbeta5 is controlled by the association with an additional subunit, R7BP, making elucidation of its contribution to striatal signaling essential for understanding molecular mechanisms of behaviors mediated by the striatum. In this study, we report that elimination of R7BP in mice results in motor coordination deficits and greater locomotor response to morphine administration, consistent with the essential role of R7BP in maintaining RGS9-2 expression in the striatum. However, in contrast to previously reported observations with RGS9-2 knockouts, mice lacking R7BP do not show higher sensitivity to locomotor-stimulating effects of cocaine. Using a striatum-specific knockdown approach, we show that the sensitivity of motor stimulation to cocaine is instead dependent on RGS7, whose complex formation with R7BP is dictated by RGS9-2 expression. These results indicate that dopamine signaling in the striatum is controlled by concerted interplay between two RGS proteins, RGS7 and RGS9-2, which are balanced by a common subunit, R7BP.


Asunto(s)
Cocaína/farmacología , Cuerpo Estriado/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Aprendizaje/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Proteínas RGS/metabolismo , Animales , Células Cultivadas , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Neuronas/efectos de los fármacos , Neuronas/fisiología , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Proteínas RGS/deficiencia , Interferencia de ARN/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Prueba de Desempeño de Rotación con Aceleración Constante/métodos , Estadísticas no Paramétricas , Transfección/métodos
10.
Cell Biochem Biophys ; 54(1-3): 33-46, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19521673

RESUMEN

G protein-coupled receptor signaling pathways mediate the transmission of signals from the extracellular environment to the generation of cellular responses, a process that is critically important for neurons and neurotransmitter action. The ability to promptly respond to rapidly changing stimulation requires timely inactivation of G proteins, a process controlled by a family of specialized proteins known as regulators of G protein signaling (RGS). The R7 group of RGS proteins (R7 RGS) has received special attention due to their pivotal roles in the regulation of a range of crucial neuronal processes such as vision, motor control, reward behavior, and nociception in mammals. Four proteins in this group, RGS6, RGS7, RGS9, and RGS11, share a common molecular organization of three modules: (i) the catalytic RGS domain, (ii) a GGL domain that recruits G beta(5), an outlying member of the G protein beta subunit family, and (iii) a DEP/DHEX domain that mediates interactions with the membrane anchor proteins R7BP and R9AP. As heterotrimeric complexes, R7 RGS proteins not only associate with and regulate a number of G protein signaling pathway components, but have also been found to form complexes with proteins that are not traditionally associated with G protein signaling. This review summarizes our current understanding of the biology of the R7 RGS complexes including their structure/functional organization, protein-protein interactions, and physiological roles.


Asunto(s)
Neuronas/metabolismo , Proteínas RGS/fisiología , Animales , Ratones , Unión Proteica , Conformación Proteica , Proteínas RGS/metabolismo , Transducción de Señal
11.
Mol Cell Biol ; 29(11): 3033-44, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19332565

RESUMEN

Neurotransmitter signaling via G protein coupled receptors is crucially controlled by regulators of G protein signaling (RGS) proteins that shape the duration and extent of the cellular response. In the striatum, members of the R7 family of RGS proteins modulate signaling via D2 dopamine and mu-opioid receptors controlling reward processing and locomotor coordination. Recent findings have established that R7 RGS proteins function as macromolecular complexes with two subunits: type 5 G protein beta (Gbeta5) and R7 binding protein (R7BP). In this study, we report that the subunit compositions of these complexes in striatum undergo remodeling upon changes in neuronal activity. We found that under normal conditions two equally abundant striatal R7 RGS proteins, RGS9-2 and RGS7, are unequally coupled to the R7BP subunit, which is present in complex predominantly with RGS9-2 rather than with RGS7. Changes in the neuronal excitability or oxygenation status resulting in extracellular calcium entry, uncouples RGS9-2 from R7BP, triggering its selective degradation. Concurrently, released R7BP binds to mainly intracellular RGS7 and recruits it to the plasma membrane and the postsynaptic density. These observations introduce activity-dependent remodeling of R7 RGS complexes as a new molecular plasticity mechanism in striatal neurons and suggest a general model for achieving rapid posttranslational subunit rearrangement in multisubunit complexes.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Neostriado/metabolismo , Subunidades de Proteína/metabolismo , Proteínas RGS/metabolismo , Transducción de Señal , Animales , Bovinos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Neostriado/citología , Neostriado/ultraestructura , Neuronas/citología , Neuronas/metabolismo , Neuronas/ultraestructura , Unión Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Transfección
12.
J Neurosci ; 27(51): 14117-27, 2007 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18094251

RESUMEN

A member of regulator of G-protein signaling family, RGS9-2, is an essential modulator of signaling through neuronal dopamine and opioid G-protein-coupled receptors. Recent findings indicate that the abundance of RGS9-2 determines sensitivity of signaling in the locomotor and reward systems in the striatum. In this study we report the mechanism that sets the concentration of RGS9-2 in vivo, thus controlling G-protein signaling sensitivity in the region. We found that RGS9-2 possesses specific degradation determinants which target it for constitutive destruction by lysosomal cysteine proteases. Shielding of these determinants by the binding partner R7 binding-protein (R7BP) controls RGS9-2 expression at the posttranslational level. In addition, binding to R7BP in neurons targets RGS9-2 to the specific intracellular compartment, the postsynaptic density. Implementation of this mechanism throughout ontogenetic development ensures expression of RGS9-2/type 5 G-protein beta subunit/R7BP complexes at postsynaptic sites in unison with increased signaling demands at mature synapses.


Asunto(s)
Membrana Celular/enzimología , Cisteína Endopeptidasas/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas RGS/biosíntesis , Secuencia de Aminoácidos , Animales , Membrana Celular/química , Membrana Celular/genética , Cuerpo Estriado/química , Cuerpo Estriado/metabolismo , Cisteína Endopeptidasas/análisis , Cisteína Endopeptidasas/genética , Lisosomas/enzimología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas RGS/genética , Proteínas RGS/metabolismo
13.
J Biol Chem ; 282(7): 4772-4781, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17158100

RESUMEN

A member of the RGS (regulators of G protein signaling) family, RGS9-2 is a critical regulator of G protein signaling pathways that control locomotion and reward signaling in the brain. RGS9-2 is specifically expressed in striatal neurons where it forms complexes with its newly discovered partner, R7BP (R7 family binding protein). Interaction with R7BP is important for the subcellular targeting of RGS9-2, which in native neurons is found in plasma membrane and its specializations, postsynaptic densities. Here we report that R7BP plays an additional important role in determining proteolytic stability of RGS9-2. We have found that co-expression with R7BP dramatically elevates the levels of RGS9-2 and its constitutive subunit, Gbeta5. Measurement of the RGS9-2 degradation kinetics in cells indicates that R7BP markedly reduces the rate of RGS9-2.Gbeta5 proteolysis. Lentivirus-mediated RNA interference knockdown of the R7BP expression in native striatal neurons results in the corresponding decrease in RGS9-2 protein levels. Analysis of the molecular determinants that mediate R7BP/RGS9-2 binding to result in proteolytic protection have identified that the binding site for R7BP in RGS proteins is formed by pairing of the DEP (Disheveled, EGL-10, Pleckstrin) domain with the R7H (R7 homology), a domain of previously unknown function that interacts with four putative alpha-helices of the R7BP core. These findings provide a mechanism for the regulation of the RGS9 protein stability in the striatal neurons.


Asunto(s)
Neuronas/fisiología , Proteínas RGS/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Encéfalo/citología , Encéfalo/fisiología , Línea Celular , Proteínas Dishevelled , Proteínas de Unión al GTP , Expresión Génica , Humanos , Ratones , Neuronas/citología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas RGS/genética , Interferencia de ARN
14.
Mol Pharmacol ; 70(3): 1062-70, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16788090

RESUMEN

Exposure to hepatitis C virus (HCV) can lead to the development of cirrhosis and hepatocellular carcinoma. To examine the effects of long-term HCV infection on hepatic cytochrome P450 1A1 (CYP1A1) expression and function, we used a human hepatoma cell line expressing the HCV subgenomic replicon (Huh.8) to evaluate CYP1A1 induction by the aryl hydrocarbon receptor (AhR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In this study, we demonstrate that the induction of CYP1A1 expression in Huh.8 cells by TCDD but not by beta-naphthoflavone or 3-methylcholanthrene was significantly diminished. TCDD exposure of Huh.8 cells resulted in greater than 55% suppression of CYP1A1 transcription compared with the parent cell line Huh7, whereas protein levels and enzyme activities were further diminished. Suppression of CYP1A1 mRNA expression in TCDD-treated Huh.8 cells was partially reversed after pretreatment with the antioxidants N-acetylcysteine and nordihydroguaiaretic acid, suggesting a role for oxidative stress. Induced CYP1A1 message, protein, and enzyme activity were partially restored in an Huh7 cell line expressing the HCV replicon containing a deletion in the nonstructural protein NS5A. Furthermore, adenoviral expression of NS5A in Huh7 partially suppressed TCDD-induced CYP1A1 protein and enzyme activity, implicating this protein in the mechanism of suppression. These findings demonstrate that TCDD-mediated AhR signaling is impaired in hepatocytes in which HCV is present and that NS5A alone or in the presence of other nonstructural proteins of the subgenomic replicon is in part responsible.


Asunto(s)
Citocromo P-450 CYP1A1/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hepacivirus/genética , Metilcolantreno/farmacología , Dibenzodioxinas Policloradas/farmacología , Replicón/genética , beta-naftoflavona/farmacología , Células Cultivadas , Glucuronosiltransferasa/genética , Humanos , Ligandos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Transcripción Genética , Proteínas no Estructurales Virales/metabolismo
15.
J Biochem Mol Toxicol ; 19(2): 78-86, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15849719

RESUMEN

To better understand the molecular mechanisms of cytochrome P450 1A2 (CYP1A2) regulation, we have characterized a region of the promoter (+3 to -176) that contains a single E-box and an adjacent nuclear factor 1 (NF1)-like DNA binding site. The E-box was shown to specifically bind nuclear proteins that were recognized by antibodies against upstream stimulatory factor (USF) 1 and 2. Comparison of NF1 binding proteins in HepG2 cells and primary cultures of rat hepatocytes revealed different patterns of DNA-protein complexes, all of which were recognized by a general NF1 antibody. Mutations of the E-box resulted in substantial reduction of promoter activity in either primary hepatocytes or HepG2 cells regardless of the presence in the reporter constructs of other CYP1A2 regulatory elements, such as the hepatic nuclear factor 1 (HNF-1) binding site. In contrast, reporter gene activity of the promoter construct harboring the mutated NF1-like binding site was affected by upstream sequences when transfected into HepG2 cells, but not in primary hepatocytes. We conclude that both USF proteins and different isoforms of NF1 contribute to the constitutive expression of CYP1A2.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Citocromo P-450 CYP1A2/genética , Regulación Enzimológica de la Expresión Génica/genética , Mutación , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Citocromo P-450 CYP1A2/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Factores de Transcripción NFI , Factores de Transcripción/metabolismo , Transcripción Genética
16.
Theor Appl Genet ; 107(7): 1297-303, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12879254

RESUMEN

The Russian wheat aphid is a significant pest problem in wheat and barley in North America. Genetic resistance in wheat is the most effective and economical means to control the damage caused by the aphid. Dn7 is a rye gene located on chromosome 1RS that confers resistance to the Russian wheat aphid. The gene was previously transferred from rye into a wheat background via a 1RS/1BL translocation. This study was conducted to genetically map Dn7 and to characterize the type of resistance the gene confers. The resistant line '94M370' was crossed with a susceptible wheat cultivar that also contains a pair of 1RS/1BL translocation chromosomes. The F(2) progeny from this cross segregated for resistance in a ratio of 3 resistant: 1 susceptible, indicating a single dominant gene. One-hundred and eleven RFLP markers previously mapped on wheat chromosomes 1A, 1B and 1D, barley chromosome 1H and rye chromosome 1R, were used to screen the parents for polymorphism. A genetic map containing six markers linked to Dn7, encompassing 28.2 cM, was constructed. The markers flanking Dn7 were Xbcd1434 and XksuD14, which mapped 1.4 cM and 7.4 cM from Dn7, respectively. Dn7 confers antixenosis, and provides a higher level of resistance than that provided by Dn4. The applications of Dn7 and the linked markers in wheat breeding are discussed.


Asunto(s)
Áfidos/fisiología , Mapeo Cromosómico , Genes de Plantas/genética , Inmunidad Innata/genética , Secale/genética , Triticum/genética , Animales , Cromosomas de las Plantas/genética , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Marcadores Genéticos , Datos de Secuencia Molecular , América del Norte , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Polimorfismo de Longitud del Fragmento de Restricción , Triticum/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...