RESUMEN
Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state regulatory potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbor distinctive transcription factor binding motifs that are similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we show that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.
Asunto(s)
Epigénesis Genética , Epigenoma , Especificidad de la Especie , Animales , Ratones , Humanos , Células Sanguíneas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Regulación de la Expresión Génica , Epigenómica/métodosRESUMEN
Inducible pluripotent stem cells (iPSCs) derived from patient samples have significantly enhanced our ability to model neurological diseases. Comparative studies of dopaminergic (DA) neurons differentiated from iPSCs derived from siblings with Gaucher disease discordant for parkinsonism provides a valuable avenue to explore genetic modifiers contributing to GBA1-associated parkinsonism in disease-relevant cells. However, such studies are often complicated by the inherent heterogeneity in differentiation efficiency among iPSC lines derived from different individuals. To address this technical challenge, we devised a selection strategy to enrich dopaminergic (DA) neurons expressing tyrosine hydroxylase (TH). A neomycin resistance gene (neo) was inserted at the C-terminus of the TH gene following a T2A self-cleavage peptide, placing its expression under the control of the TH promoter. This allows for TH+ DA neuron enrichment through geneticin selection. This method enabled us to generate comparable, high-purity DA neuron cultures from iPSC lines derived from three sisters that we followed for over a decade: one sibling is a healthy individual, and the other two have Gaucher disease (GD) with GBA1 genotype N370S/c.203delC+R257X (p.N409S/c.203delC+p.R296X). Notably, the younger sister with GD later developed Parkinson disease (PD). A comprehensive analysis of these high-purity DA neurons revealed that although GD DA neurons exhibited decreased levels of glucocerebrosidase (GCase), there was no substantial difference in GCase protein levels or lipid substrate accumulation between DA neurons from the GD and GD/PD sisters, suggesting that the PD discordance is related to of other genetic modifiers.
RESUMEN
Knowledge of locations and activities of cis -regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our V al i dated S ystematic I ntegrati on (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that were similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.
Asunto(s)
Leucemia Mieloide Aguda , Leucemia , Ratones , Animales , Humanos , Leucemia/genética , Análisis de Secuencia de ARN , Proteínas de Fusión Oncogénica/genética , Leucemia Mieloide Aguda/genética , Subunidad beta del Factor de Unión al Sitio Principal/genética , Cromosomas Humanos Par 16 , Inversión Cromosómica , Cadenas Pesadas de Miosina/genéticaRESUMEN
BACKGROUND: Epigenetic modification of chromatin plays a pivotal role in regulating gene expression during cell differentiation. The scale and complexity of epigenetic data pose significant challenges for biologists to identify the regulatory events controlling cell differentiation. RESULTS: To reduce the complexity, we developed a package, called Snapshot, for clustering and visualizing candidate cis-regulatory elements (cCREs) based on their epigenetic signals during cell differentiation. This package first introduces a binarized indexing strategy for clustering the cCREs. It then provides a series of easily interpretable figures for visualizing the signal and epigenetic state patterns of the cCREs clusters during the cell differentiation. It can also use different hierarchies of cell types to highlight the epigenetic history specific to any particular cell lineage. We demonstrate the utility of Snapshot using data from a consortium project for ValIdated Systematic IntegratiON (VISION) of epigenomic data in hematopoiesis. CONCLUSION: The package Snapshot can identify all distinct clusters of genomic locations with unique epigenetic signal patterns during cell differentiation. It outperforms other methods in terms of interpreting and reproducing the identified cCREs clusters. The package of Snapshot is available at GitHub: https://github.com/guanjue/Snapshot .
Asunto(s)
Cromatina , Epigenómica , Epigenómica/métodos , Diferenciación Celular/genética , Epigénesis Genética , Análisis por ConglomeradosRESUMEN
Spinal bulbar muscular atrophy (SBMA), the first identified CAG-repeat expansion disorder, is an X-linked neuromuscular disorder involving CAG-repeat-expansion mutations in the androgen receptor (AR) gene. We utilized CRISPR-Cas9 gene editing to engineer novel isogenic human induced pluripotent stem cell (hiPSC) models, consisting of isogenic AR knockout, control and disease lines expressing mutant AR with distinct repeat lengths, as well as control and disease lines expressing FLAG-tagged wild-type and mutant AR, respectively. Adapting a small-molecule cocktail-directed approach, we differentiate the isogenic hiPSC models into motor neuron-like cells with a highly enriched population to uncover cell-type-specific mechanisms underlying SBMA and to distinguish gain- from loss-of-function properties of mutant AR in disease motor neurons. We demonstrate that ligand-free mutant AR causes drastic mitochondrial dysfunction in neurites of differentiated disease motor neurons due to gain-of-function mechanisms and such cytotoxicity can be amplified upon ligand (androgens) treatment. We further show that aberrant interaction between ligand-free, mitochondria-localized mutant AR and F-ATP synthase is associated with compromised mitochondrial respiration and multiple other mitochondrial impairments. These findings counter the established notion that androgens are requisite for mutant AR-induced cytotoxicity in SBMA, reveal a compelling mechanistic link between ligand-free mutant AR, F-ATP synthase and mitochondrial dysfunction, and provide innovative insights into motor neuron-specific therapeutic interventions for SBMA.
Asunto(s)
Células Madre Pluripotentes Inducidas , Atrofia Muscular Espinal , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismoRESUMEN
T follicular helper (Tfh) cells provide signals to initiate and maintain the germinal center (GC) reaction and are crucial for the generation of robust, long-lived antibody responses, but how the GC microenvironment affects Tfh cells is not well understood. Here we develop an in vivo T cell-intrinsic CRISPR-knockout screen to evaluate Tfh and Th1 cells in an acute viral infection model to identify regulators of Tfh cells in their physiological setting. Using a screen of druggable-targets, alongside genetic, transcriptomic and cellular analyses, we identify a function of HIF-1α in suppressing mTORC1-mediated and Myc-related pathways, and provide evidence that VHL-mediated degradation of HIF-1α is required for Tfh development; an expanded in vivo CRISPR screen reveals multiple components of these pathways that regulate Tfh versus Th1 cells, including signaling molecules, cell-cycle regulators, nutrient transporters, metabolic enzymes and autophagy mediators. Collectively, our data serve as a resource for studying Tfh versus Th1 decisions, and implicate the VHL-HIF-1α axis in fine-tuning Tfh generation.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Animales , Formación de Anticuerpos , Diferenciación Celular/inmunología , Expresión Génica , Técnicas de Inactivación de Genes , Centro Germinal/inmunología , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inmunidad Humoral/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Virosis/inmunologíaRESUMEN
Chromatin immunoprecipitation followed by massively parallel, high throughput sequencing (ChIP-seq) is the method of choice for genome-wide identification of DNA segments bound by specific transcription factors or in chromatin with particular histone modifications. However, the quality of ChIP-seq datasets varies widely, with a substantial fraction being of intermediate to poor quality. Thus, it is important to discern and control the factors that contribute to variation in ChIP-seq. In this study, we focused on sonication, a user-controlled variable, to produce sheared chromatin. We systematically varied the amount of shearing of fixed chromatin from a mouse erythroid cell line, carefully measuring the distribution of resultant fragment lengths prior to ChIP-seq. This systematic study was complemented with a retrospective analysis of additional experiments. We found that the level of sonication had a pronounced impact on the quality of ChIP-seq signals. Over-sonication consistently reduced quality, while the impact of under-sonication differed among transcription factors, with no impact on sites bound by CTCF but frequently leading to the loss of sites occupied by TAL1 or bound by POL2. The bound sites not observed in low-quality datasets were inferred to be a mix of both direct and indirect binding. We leveraged these findings to produce a set of CTCF ChIP-seq datasets in rare, primary hematopoietic progenitor cells. Our observation that the amount of chromatin sonication is a key variable in success of ChIP-seq experiments indicates that monitoring the level of sonication can improve ChIP-seq quality and reproducibility and facilitate ChIP-seq in rare cell types.
Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Ratones , Animales , Cromatina/genética , Reproducibilidad de los Resultados , Estudios Retrospectivos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/genéticaRESUMEN
Myelofibrosis is a severe myeloproliferative neoplasm characterized by increased numbers of abnormal bone marrow megakaryocytes that induce fibrosis, destroying the hematopoietic microenvironment. To determine the cellular and molecular basis for aberrant megakaryopoiesis in myelofibrosis, we performed single-cell transcriptome profiling of 135,929 CD34+ lineage- hematopoietic stem and progenitor cells (HSPCs), single-cell proteomics, genomics, and functional assays. We identified a bias toward megakaryocyte differentiation apparent from early multipotent stem cells in myelofibrosis and associated aberrant molecular signatures. A sub-fraction of myelofibrosis megakaryocyte progenitors (MkPs) are transcriptionally similar to healthy-donor MkPs, but the majority are disease specific, with distinct populations expressing fibrosis- and proliferation-associated genes. Mutant-clone HSPCs have increased expression of megakaryocyte-associated genes compared to wild-type HSPCs, and we provide early validation of G6B as a potential immunotherapy target. Our study paves the way for selective targeting of the myelofibrosis clone and illustrates the power of single-cell multi-omics to discover tumor-specific therapeutic targets and mediators of tissue fibrosis.
Asunto(s)
Hematopoyesis/fisiología , Megacariocitos/patología , Mielofibrosis Primaria/sangre , Anciano , Anciano de 80 o más Años , Diferenciación Celular , Femenino , Regulación de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Megacariocitos/fisiología , Persona de Mediana Edad , Mutación , Receptores Inmunológicos/genética , Análisis de la Célula Individual/métodosRESUMEN
Cobalamin C (cblC) deficiency, the most common inborn error of intracellular cobalamin metabolism, is caused by mutations in MMACHC, a gene responsible for the processing and intracellular trafficking of vitamin B12. This recessive disorder is characterized by a failure to metabolize cobalamin into adenosyl- and methylcobalamin, which results in the biochemical perturbations of methylmalonic acidemia, hyperhomocysteinemia and hypomethioninemia caused by the impaired activity of the downstream enzymes, methylmalonyl-CoA mutase and methionine synthase. Cobalamin C deficiency can be accompanied by a wide spectrum of clinical manifestations, including progressive blindness, and, in mice, manifests with very early embryonic lethality. Because zebrafish harbor a full complement of cobalamin metabolic enzymes, we used genome editing to study the loss of mmachc function and to develop the first viable animal model of cblC deficiency. mmachc mutants survived the embryonic period but perished in early juvenile life. The mutants displayed the metabolic and clinical features of cblC deficiency including methylmalonic acidemia, severe growth retardation and lethality. Morphologic and metabolic parameters improved when the mutants were raised in water supplemented with small molecules used to treat patients, including hydroxocobalamin, methylcobalamin, methionine and betaine. Furthermore, mmachc mutants bred to express rod and/or cone fluorescent reporters, manifested a retinopathy and thin optic nerves (ON). Expression analysis using whole eye mRNA revealed the dysregulation of genes involved in phototransduction and cholesterol metabolism. Zebrafish with mmachc deficiency recapitulate the several of the phenotypic and biochemical features of the human disorder, including ocular pathology, and show a response to established treatments.
Asunto(s)
Proteínas Portadoras/genética , Morfogénesis/genética , Deficiencia de Vitamina B 12/genética , Vitamina B 12/genética , Proteínas de Pez Cebra/genética , Animales , Homocistinuria/genética , Homocistinuria/patología , Humanos , Ratones , Mutación/genética , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/patología , Oxidorreductasas/genética , Retina/crecimiento & desarrollo , Retina/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Deficiencia de Vitamina B 12/metabolismo , Deficiencia de Vitamina B 12/patología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrolloRESUMEN
Progenitor-like CD8+ T cells mediate long-term immunity to chronic infection and cancer and respond potently to immune checkpoint blockade. These cells share transcriptional regulators with memory precursor cells, including T cell-specific transcription factor 1 (TCF1), but it is unclear whether they adopt distinct programs to adapt to the immunosuppressive environment. By comparing the single-cell transcriptomes and epigenetic profiles of CD8+ T cells responding to acute and chronic viral infections, we found that progenitor-like CD8+ T cells became distinct from memory precursor cells before the peak of the T cell response. We discovered a coexpression gene module containing Tox that exhibited higher transcriptional activity associated with more abundant active histone marks in progenitor-like cells than memory precursor cells. Moreover, thymocyte selection-associated high mobility group box protein TOX (TOX) promoted the persistence of antiviral CD8+ T cells and was required for the programming of progenitor-like CD8+ T cells. Thus, long-term CD8+ T cell immunity to chronic viral infection requires unique transcriptional and epigenetic programs associated with the transcription factor TOX.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Infecciones/etiología , Análisis de la Célula Individual , Animales , Biomarcadores , Inmunoprecipitación de Cromatina , Epigénesis Genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Memoria Inmunológica , Infecciones/metabolismo , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Factores de Tiempo , TranscriptomaRESUMEN
BACKGROUND: Enhancers and promoters are cis-acting regulatory elements associated with lineage-specific gene expression. Previous studies showed that different categories of active regulatory elements are in regions of open chromatin, and each category is associated with a specific subset of post-translationally marked histones. These regulatory elements are systematically activated and repressed to promote commitment of hematopoietic stem cells along separate differentiation paths, including the closely related erythrocyte (ERY) and megakaryocyte (MK) lineages. However, the order in which these decisions are made remains unclear. RESULTS: To characterize the order of cell fate decisions during hematopoiesis, we collected primary cells from mouse bone marrow and isolated 10 hematopoietic populations to generate transcriptomes and genome-wide maps of chromatin accessibility and histone H3 acetylated at lysine 27 binding (H3K27ac). Principle component analysis of transcriptional and open chromatin profiles demonstrated that cells of the megakaryocyte lineage group closely with multipotent progenitor populations, whereas erythroid cells form a separate group distinct from other populations. Using H3K27ac and open chromatin profiles, we showed that 89% of immature MK (iMK)-specific active regulatory regions are present in the most primitive hematopoietic cells, 46% of which contain active enhancer marks. These candidate active enhancers are enriched for transcription factor binding site motifs for megakaryopoiesis-essential proteins, including ERG and ETS1. In comparison, only 64% of ERY-specific active regulatory regions are present in the most primitive hematopoietic cells, 20% of which containing active enhancer marks. These regions were not enriched for any transcription factor consensus sequences. Incorporation of genome-wide DNA methylation identified significant levels of de novo methylation in iMK, but not ERY. CONCLUSIONS: Our results demonstrate that megakaryopoietic profiles are established early in hematopoiesis and are present in the majority of the hematopoietic progenitor population. However, megakaryopoiesis does not constitute a "default" differentiation pathway, as extensive de novo DNA methylation accompanies megakaryopoietic commitment. In contrast, erythropoietic profiles are not established until a later stage of hematopoiesis, and require more dramatic changes to the transcriptional and epigenetic programs. These data provide important insights into lineage commitment and can contribute to ongoing studies related to diseases associated with differentiation defects.
Asunto(s)
Eritropoyesis , Redes Reguladoras de Genes , Células Madre Hematopoyéticas/citología , Megacariocitos/citología , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ARN/métodos , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Metilación de ADN , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Masculino , Ratones , Especificidad de Órganos , Secuenciación Completa del GenomaRESUMEN
Diamond-Blackfan anemia (DBA) is a congenital bone marrow failure syndrome characterized by erythroid hypoplasia, usually without perturbation of other hematopoietic lineages. Approximately 65% of DBA patients with autosomal dominant inheritance have heterozygous mutations or deletions in ribosomal protein (RP) genes while <1% of patients with X-linked inheritance have been identified with mutations in the transcription factor GATA1 Erythroid cells from patients with DBA have not been well characterized, and the mechanisms underlying the erythroid specific effects of either RP or GATA1 associated DBA remain unclear. We have developed an ex vivo culture system to expand peripheral blood CD34+ progenitor cells from patients with DBA and differentiate them into erythroid cells. Cells from patients with RP or GATA1 mutations showed decreased proliferation and delayed erythroid differentiation in comparison with controls. RNA transcript analyses of erythroid cells from controls and patients with RP or GATA1 mutations showed distinctive differences, with upregulation of heme biosynthesis genes prominently in RP-mediated DBA and failure to upregulate components of the translational apparatus in GATA1-mediated DBA. Our data show that dysregulation of translation is a common feature of DBA caused by both RP and GATA1 mutations. This trial was registered at www.clinicaltrials.gov as #NCT00106015.
Asunto(s)
Anemia de Diamond-Blackfan/genética , Adolescente , Adulto , Anemia de Diamond-Blackfan/sangre , Anemia de Diamond-Blackfan/metabolismo , Estudios de Casos y Controles , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Niño , Preescolar , Células Eritroides/metabolismo , Células Eritroides/patología , Eritropoyesis/genética , Femenino , Factor de Transcripción GATA1/genética , Genes Dominantes , Genes Ligados a X , Humanos , Masculino , Modelos Genéticos , Mutación , Proteínas Ribosómicas/genética , Transcriptoma , Adulto JovenRESUMEN
BACKGROUND: Autologous hematopoietic stem cell transplantation (HSCT) of gene-modified cells is an alternative to enzyme replacement therapy (ERT) and allogeneic HSCT that has shown clinical benefit for adenosine deaminase-deficient (ADA-deficient) SCID when combined with reduced intensity conditioning (RIC) and ERT cessation. Clinical safety and therapeutic efficacy were evaluated in a phase II study. METHODS: Ten subjects with confirmed ADA-deficient SCID and no available matched sibling or family donor were enrolled between 2009 and 2012 and received transplantation with autologous hematopoietic CD34+ cells that were modified with the human ADA cDNA (MND-ADA) γ-retroviral vector after conditioning with busulfan (90 mg/m2) and ERT cessation. Subjects were followed from 33 to 84 months at the time of data analysis. Safety of the procedure was assessed by recording the number of adverse events. Efficacy was assessed by measuring engraftment of gene-modified hematopoietic stem/progenitor cells, ADA gene expression, and immune reconstitution. RESULTS: With the exception of the oldest subject (15 years old at enrollment), all subjects remained off ERT with normalized peripheral blood mononuclear cell (PBMC) ADA activity, improved lymphocyte numbers, and normal proliferative responses to mitogens. Three of nine subjects were able to discontinue intravenous immunoglobulin replacement therapy. The MND-ADA vector was persistently detected in PBMCs (vector copy number [VCN] = 0.1-2.6) and granulocytes (VCN = 0.01-0.3) through the most recent visits at the time of this writing. No patient has developed a leukoproliferative disorder or other vector-related clinical complication since transplant. CONCLUSION: These results demonstrate clinical therapeutic efficacy from gene therapy for ADA-deficient SCID, with an excellent clinical safety profile. TRIAL REGISTRATION: ClinicalTrials.gov NCT00794508. FUNDING: Food and Drug Administration Office of Orphan Product Development award, RO1 FD003005; NHLBI awards, PO1 HL73104 and Z01 HG000122; UCLA Clinical and Translational Science Institute awards, UL1RR033176 and UL1TR000124.
Asunto(s)
Adenosina Desaminasa/deficiencia , Agammaglobulinemia , Regulación Enzimológica de la Expresión Génica , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Inmunodeficiencia Combinada Grave , Transducción Genética , Adenosina Desaminasa/biosíntesis , Adenosina Desaminasa/genética , Adolescente , Agammaglobulinemia/enzimología , Agammaglobulinemia/genética , Agammaglobulinemia/terapia , Autoinjertos , Niño , Preescolar , Femenino , Vectores Genéticos , Humanos , Lactante , Masculino , Retroviridae , Inmunodeficiencia Combinada Grave/enzimología , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/terapiaRESUMEN
Gaucher disease, the inherited deficiency of lysosomal glucocerebrosidase, is characterized by the presence of glucosylceramide-laden macrophages resulting from impaired digestion of aged erythrocytes or apoptotic leukocytes. Studies of macrophages from patients with type 1 Gaucher disease with genotypes N370S/N370S, N370S/L444P or N370S/c.84dupG revealed that Gaucher macrophages have impaired efferocytosis resulting from reduced levels of p67phox and Rab7. The decreased Rab7 expression leads to impaired fusion of phagosomes with lysosomes. Moreover, there is defective translocation of p67phox to phagosomes, resulting in reduced intracellular production of reactive oxygen species. These factors contribute to defective deposition and clearance of apoptotic cells in phagolysosomes, which may have an impact on the inflammatory response and contribute to the organomegaly and inflammation seen in patients with Gaucher disease.
Asunto(s)
Enfermedad de Gaucher/genética , Enfermedad de Gaucher/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Fagocitosis/genética , Fagocitosis/inmunología , Biomarcadores , Citofagocitosis/genética , Citofagocitosis/inmunología , Genotipo , Glucosilceramidasa/genética , Humanos , Inmunohistoquímica , Mutación , Fagosomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio/genética , Estallido Respiratorio/inmunologíaRESUMEN
During chronic viral infections and in cancer, T cells become dysfunctional, a state known as T cell exhaustion. Although it is well recognized that memory CD8 T cells account for the persistence of CD8 T cell immunity after acute infection, how exhausted T cells persist remains less clear. Using chronic infection with lymphocytic choriomeningitis virus clone 13 and tumor samples, we demonstrate that CD8 T cells differentiate into a less exhausted TCF1high and a more exhausted TCF1low population. Virus-specific TCF1high CD8 T cells, which resemble T follicular helper (TFH) cells, persist and recall better than do TCF1low cells and act as progenitor cells to replenish TCF1low cells. We show that TCF1 is both necessary and sufficient to support this progenitor-like CD8 subset, whereas cell-intrinsic type I interferon signaling suppresses their differentiation. Accordingly, cell-intrinsic TCF1 deficiency led to a loss of these progenitor CD8 T cells, sharp contraction of virus-specific T cells, and uncontrolled viremia. Mechanistically, TCF1 repressed several pro-exhaustion factors and induced Bcl6 in CD8 T cells, which promoted the progenitor fate. We propose that the TCF1-Bcl6 axis counteracts type I interferon to repress T cell exhaustion and maintain T cell stemness, which is critical for persistent antiviral CD8 T cell responses in chronic infection. These findings provide insight into the requirements for persistence of T cell immune responses in the face of exhaustion and suggest mechanisms by which effective T cell-mediated immunity may be enhanced during chronic infections and cancer.
RESUMEN
BACKGROUND: Recent advances in single-cell techniques have provided the opportunity to finely dissect cellular heterogeneity within populations previously defined by "bulk" assays and to uncover rare cell types. In human hematopoiesis, megakaryocytes and erythroid cells differentiate from a shared precursor, the megakaryocyte-erythroid progenitor (MEP), which remains poorly defined. RESULTS: To clarify the cellular pathway in erythro-megakaryocyte differentiation, we correlate the surface immunophenotype, transcriptional profile, and differentiation potential of individual MEP cells. Highly purified, single MEP cells were analyzed using index fluorescence-activated cell sorting and parallel targeted transcriptional profiling of the same cells was performed using a specifically designed panel of genes. Differentiation potential was tested in novel, single-cell differentiation assays. Our results demonstrate that immunophenotypic MEP comprise three distinct subpopulations: "Pre-MEP," enriched for erythroid/megakaryocyte progenitors but with residual myeloid differentiation capacity; "E-MEP," strongly biased towards erythroid differentiation; and "MK-MEP," a previously undescribed, rare population of cells that are bipotent but primarily generate megakaryocytic progeny. Therefore, conventionally defined MEP are a mixed population, as a minority give rise to mixed-lineage colonies while the majority of cells are transcriptionally primed to generate exclusively single-lineage output. CONCLUSIONS: Our study clarifies the cellular hierarchy in human megakaryocyte/erythroid lineage commitment and highlights the importance of using a combination of single-cell approaches to dissect cellular heterogeneity and identify rare cell types within a population. We present a novel immunophenotyping strategy that enables the prospective identification of specific intermediate progenitor populations in erythro-megakaryopoiesis, allowing for in-depth study of disorders including inherited cytopenias, myeloproliferative disorders, and erythromegakaryocytic leukemias.
Asunto(s)
Hematopoyesis , Células Progenitoras de Megacariocitos y Eritrocitos/citología , Análisis de la Célula Individual/métodos , Adulto , Anciano , Linaje de la Célula , Separación Celular/métodos , Células Eritroides/citología , Células Eritroides/metabolismo , Femenino , Humanos , Masculino , Células Progenitoras de Megacariocitos y Eritrocitos/clasificación , Células Progenitoras de Megacariocitos y Eritrocitos/metabolismo , Megacariocitos/citología , Megacariocitos/metabolismo , Persona de Mediana EdadRESUMEN
BACKGROUND: Laminins are heterotrimeric complexes, consisting of α, ß and γ subunits that form a major component of basement membranes and extracellular matrix. Laminin complexes have different, but often overlapping, distributions and functions. METHODS: Under our clinical protocol, NCT00068224, we have performed extensive clinical and neuropsychiatric phenotyping, neuroimaging and molecular analysis in patients with laminin α1 (LAMA1)-associated lamininopathy. We investigated the consequence of mutations in LAMA1 using patient-derived fibroblasts and neuronal cells derived from neuronal stem cells. RESULTS: In this paper we describe individuals with biallelic mutations in LAMA1, all of whom had the cerebellar dysplasia, myopia and retinal dystrophy, in addition to obsessive compulsive traits, tics and anxiety. Patient-derived fibroblasts have impaired adhesion, reduced migration, abnormal morphology and increased apoptosis due to impaired activation of Cdc42, a member of the Rho family of GTPases that is involved in cytoskeletal dynamics. LAMA1 knockdown in human neuronal cells also showed abnormal morphology and filopodia formation, supporting the importance of LAMA1 in neuronal migration, and marking these cells potentially useful tools for disease modelling and therapeutic target discovery. CONCLUSION: This paper broadens the phenotypes associated with LAMA1 mutations. We demonstrate that LAMA1 deficiency can lead to alteration in cytoskeletal dynamics, which may invariably lead to alteration in dendrite growth and axonal formation. Estimation of disease prevalence based on population studies in LAMA1 reveals a prevalence of 1-20 in 1â 000â 000. TRIAL REGISTRATION NUMBER: NCT00068224.
Asunto(s)
Enfermedades Cerebelosas/metabolismo , Laminina/genética , Mutación , Miopía/metabolismo , Trastorno Obsesivo Compulsivo/metabolismo , Adulto , Adhesión Celular , Movimiento Celular , Enfermedades Cerebelosas/genética , Enfermedades Cerebelosas/fisiopatología , Niño , Femenino , Fibroblastos/metabolismo , Fibroblastos/fisiología , Humanos , Masculino , Miopía/genética , Miopía/fisiopatología , Neuronas/metabolismo , Neuronas/fisiología , Trastorno Obsesivo Compulsivo/genética , Trastorno Obsesivo Compulsivo/fisiopatología , Linaje , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismo , Distrofias Retinianas/fisiopatología , Síndrome , Trastornos de Tic/genética , Trastornos de Tic/metabolismo , Trastornos de Tic/fisiopatología , Adulto Joven , Proteína de Unión al GTP cdc42RESUMEN
Th9 cells produce interleukin (IL)-9, a cytokine implicated in allergic asthma and autoimmunity. Here we show that Itk, a mediator of T cell receptor signalling required for Th2 immune responses and the development of asthma, is a positive regulator of Th9 differentiation. In a model of allergic lung disease, Itk-deficient mice show reduced pulmonary inflammation and IL-9 production by T cells and innate lymphoid type 2 cells (ILC2), despite normal early induction of ILC2s. In vitro, Itk(-/-) CD4(+) T cells do not produce IL-9 and have reduced levels of IRF4 (Interferon Regulator Factor 4), a critical transcription factor for effector T cell function. Both IL-9 and IRF4 expression are rescued by either IL-2 or constitutively active STAT5, but not NFATc1. STAT5 binds the Irf4 promoter, demonstrating one mechanism by which IL-2 rescues weakly activated T cells. Itk inhibition also reduces IL-9 expression by human T cells, implicating ITK as a key regulator of Th9 induction.
Asunto(s)
Diferenciación Celular/fisiología , Factores Reguladores del Interferón/metabolismo , Interleucina-2/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Linfocitos T CD4-Positivos , Femenino , Regulación de la Expresión Génica/fisiología , Factores Reguladores del Interferón/genética , Interleucina-2/genética , Enfermedades Pulmonares/inducido químicamente , Masculino , Ratones , Ratones Noqueados , Papaína/toxicidad , Proteínas Quinasas/genética , Proteínas Tirosina Quinasas/genéticaRESUMEN
The Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency characterized by recurrent infections, thrombocytopenia, eczema, and high incidence of malignancy and autoimmunity. The cellular mechanisms underlying autoimmune complications in WAS have been extensively studied; however, they remain incompletely defined. We investigated the characteristics of IL-10-producing CD19+CD1dhighCD5+ B cells (CD1dhighCD5+ Breg) obtained from Was gene knockout (WKO) mice and found that their numbers were significantly lower in these mice compared to wild type (WT) controls. Moreover, we found a significant age-dependent reduction of the percentage of IL-10-expressing cells in WKO CD1dhighCD5+ Breg cells as compared to age-matched WT control mice. CD1dhighCD5+ Breg cells from older WKO mice did not suppress the in vitro production of inflammatory cytokines from activated CD4+ T cells. Interestingly, CD1dhighCD5+ Breg cells from older WKO mice displayed a basal activated phenotype which may prevent normal cellular responses, among which is the expression of IL-10. These defects may contribute to the susceptibility to autoimmunity with age in patients with WAS.