Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 1933: 363-380, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30945197

RESUMEN

Two major components of posttranscriptional regulation are RNA-protein interactions and RNA secondary structure. While noncoding RNAs are far more abundant than messenger RNAs in eukaryotic systems, their functions remain largely unstudied. Evidence suggests that RNA-protein interactions and RNA secondary structure also regulate the function of long noncoding RNAs (lncRNAs), which are noncoding RNAs over 200 nucleotides (nt) in length. Protein interaction profile sequencing (PIP-seq) allows researchers to perform an unbiased screen of protein-bound regions and secondary structure of RNAs throughout a transcriptome of interest. Using a peak calling approach, our pipeline is able to identify protein-protected sites (PPSs), which are putative RNA-protein interaction sites. Additionally, by taking the ratio of read coverages in double-stranded RNA (dsRNA)-seq compared to single-stranded RNA (ssRNA)-seq libraries, our analysis can also calculate an RNA secondary structure score that reflects the likelihood of a region being comprised of double- or single-stranded ribonucleotides. Researchers can also use this pipeline to look at specific regions of interest, such as known lncRNAs, and determine their protein-bound status as well as elucidate their secondary structure.


Asunto(s)
Arabidopsis/metabolismo , Biología Computacional/métodos , Huella de Proteína , Dominios y Motivos de Interacción de Proteínas , ARN Largo no Codificante/química , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Conformación de Ácido Nucleico , ARN Largo no Codificante/genética , ARN de Planta/química , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas de Unión al ARN/genética , Transcriptoma
2.
Methods Mol Biol ; 1870: 51-67, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30539546

RESUMEN

Ribonucleotides can be decorated with over 100 types of covalent chemical modifications. These modifications change the structure, function, and catalytic activity of RNAs, forming a layer of posttranscriptional regulation termed the epitranscriptome. Recent advances in high-throughput mapping have demonstrated these modifications are abundant and mark nearly all classes of RNAs, including messenger RNAs. Here, we outline one such technique called high-throughput annotation of modified ribonucleotides (HAMR). HAMR exploits the tendency of certain modified ribonucleotides to interfere with base pairing, leading to errors in complementary DNA synthesis during RNA sequencing library preparation. In total, we present a computational protocol for in silico identification of modifications with HAMR, which can be retroactively applied to a variety of RNA sequencing techniques.


Asunto(s)
Biología Computacional/métodos , ARN/genética , Ribonucleótidos , Bases de Datos Genéticas , Epigénesis Genética , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , ARN/química , Procesamiento Postranscripcional del ARN , Programas Informáticos , Transcriptoma
3.
Cell Rep ; 25(5): 1146-1157.e3, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30380407

RESUMEN

N6-methyladenosine (m6A) is a dynamic, reversible, covalently modified ribonucleotide that occurs predominantly toward 3' ends of eukaryotic mRNAs and is essential for their proper function and regulation. In Arabidopsis thaliana, many RNAs contain at least one m6A site, yet the transcriptome-wide function of m6A remains mostly unknown. Here, we show that many m6A-modified mRNAs in Arabidopsis have reduced abundance in the absence of this mark. The decrease in abundance is due to transcript destabilization caused by cleavage occurring 4 or 5 nt directly upstream of unmodified m6A sites. Importantly, we also find that, upon agriculturally relevant salt treatment, m6A is dynamically deposited on and stabilizes transcripts encoding proteins required for salt and osmotic stress response. Overall, our findings reveal that m6A generally acts as a stabilizing mark through inhibition of site-specific cleavage in plant transcriptomes, and this mechanism is required for proper regulation of the salt-stress-responsive transcriptome.


Asunto(s)
Adenosina/análogos & derivados , Arabidopsis/genética , Estabilidad del ARN/genética , Ribonucleótidos/metabolismo , Adenosina/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Secuencia Conservada/genética , Exorribonucleasas/metabolismo , Metilación/efectos de los fármacos , Sistemas de Lectura Abierta/genética , Proteínas de Plantas/metabolismo , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...