Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114019, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38551965

RESUMEN

Thymic epithelial cells (TECs) orchestrate T cell development by imposing positive and negative selection on thymocytes. Current studies on TEC biology are hampered by the absence of long-term ex vivo culture platforms, while the cells driving TEC self-renewal remain to be identified. Here, we generate long-term (>2 years) expandable 3D TEC organoids from the adult mouse thymus. For further analysis, we generated single and double FoxN1-P2A-Clover, Aire-P2A-tdTomato, and Cldn4-P2A-tdTomato reporter lines by CRISPR knockin. Single-cell analyses of expanding clonal organoids reveal cells with bipotent stem/progenitor phenotypes. These clonal organoids can be induced to express Foxn1 and to generate functional cortical- and Aire-expressing medullary-like TECs upon RANK ligand + retinoic acid treatment. TEC organoids support T cell development from immature thymocytes in vitro as well as in vivo upon transplantation into athymic nude mice. This organoid-based platform allows in vitro study of TEC biology and offers a potential strategy for ex vivo T cell development.


Asunto(s)
Células Epiteliales , Factores de Transcripción Forkhead , Organoides , Timo , Animales , Organoides/citología , Organoides/metabolismo , Timo/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ratones , Diferenciación Celular , Ratones Desnudos , Linfocitos T/citología , Linfocitos T/metabolismo , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
2.
Science ; 382(6669): 451-458, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37883554

RESUMEN

Enteroendocrine cells (EECs) are hormone-producing cells residing in the epithelium of stomach, small intestine (SI), and colon. EECs regulate aspects of metabolic activity, including insulin levels, satiety, gastrointestinal secretion, and motility. The generation of different EEC lineages is not completely understood. In this work, we report a CRISPR knockout screen of the entire repertoire of transcription factors (TFs) in adult human SI organoids to identify dominant TFs controlling EEC differentiation. We discovered ZNF800 as a master repressor for endocrine lineage commitment, which particularly restricts enterochromaffin cell differentiation by directly controlling an endocrine TF network centered on PAX4. Thus, organoid models allow unbiased functional CRISPR screens for genes that program cell fate.


Asunto(s)
Sistemas CRISPR-Cas , Linaje de la Célula , Células Enteroendocrinas , Regulación de la Expresión Génica , Proteínas Represoras , Dedos de Zinc , Humanos , Diferenciación Celular/genética , Células Enteroendocrinas/citología , Células Enteroendocrinas/metabolismo , Organoides , Adulto , Linaje de la Célula/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
3.
Nat Commun ; 14(1): 4998, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591832

RESUMEN

Optimization of CRISPR/Cas9-mediated genome engineering has resulted in base editors that hold promise for mutation repair and disease modeling. Here, we demonstrate the application of base editors for the generation of complex tumor models in human ASC-derived organoids. First we show efficacy of cytosine and adenine base editors in modeling CTNNB1 hot-spot mutations in hepatocyte organoids. Next, we use C > T base editors to insert nonsense mutations in PTEN in endometrial organoids and demonstrate tumorigenicity even in the heterozygous state. Moreover, drug sensitivity assays on organoids harboring either PTEN or PTEN and PIK3CA mutations reveal the mechanism underlying the initial stages of endometrial tumorigenesis. To further increase the scope of base editing we combine SpCas9 and SaCas9 for simultaneous C > T and A > G editing at individual target sites. Finally, we show that base editor multiplexing allow modeling of colorectal tumorigenesis in a single step by simultaneously transfecting sgRNAs targeting five cancer genes.


Asunto(s)
Células Madre Adultas , ARN Guía de Sistemas CRISPR-Cas , Adulto , Humanos , Oncogenes , Carcinogénesis/genética , Transformación Celular Neoplásica , Organoides
4.
Nature ; 597(7877): 561-565, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497418

RESUMEN

Single-cell sequencing methods have enabled in-depth analysis of the diversity of cell types and cell states in a wide range of organisms. These tools focus predominantly on sequencing the genomes1, epigenomes2 and transcriptomes3 of single cells. However, despite recent progress in detecting proteins by mass spectrometry with single-cell resolution4, it remains a major challenge to measure translation in individual cells. Here, building on existing protocols5-7, we have substantially increased the sensitivity of these assays to enable ribosome profiling in single cells. Integrated with a machine learning approach, this technology achieves single-codon resolution. We validate this method by demonstrating that limitation for a particular amino acid causes ribosome pausing at a subset of the codons encoding the amino acid. Of note, this pausing is only observed in a sub-population of cells correlating to its cell cycle state. We further expand on this phenomenon in non-limiting conditions and detect pronounced GAA pausing during mitosis. Finally, we demonstrate the applicability of this technique to rare primary enteroendocrine cells. This technology provides a first step towards determining the contribution of the translational process to the remarkable diversity between seemingly identical cells.


Asunto(s)
Ciclo Celular/genética , Codón/genética , Biosíntesis de Proteínas , RNA-Seq/métodos , Ribosomas/metabolismo , Análisis de la Célula Individual , Aminoácidos/deficiencia , Aminoácidos/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular , Femenino , Humanos , Aprendizaje Automático , Masculino , Ratones , Extensión de la Cadena Peptídica de Translación , Iniciación de la Cadena Peptídica Traduccional , Terminación de la Cadena Péptídica Traduccional , Biosíntesis de Proteínas/efectos de los fármacos , Reproducibilidad de los Resultados , Ribosomas/efectos de los fármacos
5.
Life Sci Alliance ; 4(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34373320

RESUMEN

Prime editing is a recently reported genome editing tool using a nickase-cas9 fused to a reverse transcriptase that directly synthesizes the desired edit at the target site. Here, we explore the use of prime editing in human organoids. Common TP53 mutations can be correctly modeled in human adult stem cell-derived colonic organoids with efficiencies up to 25% and up to 97% in hepatocyte organoids. Next, we functionally repaired the cystic fibrosis CFTR-F508del mutation and compared prime editing to CRISPR/Cas9-mediated homology-directed repair and adenine base editing on the CFTR-R785* mutation. Whole-genome sequencing of prime editing-repaired organoids revealed no detectable off-target effects. Despite encountering varying editing efficiencies and undesired mutations at the target site, these results underline the broad applicability of prime editing for modeling oncogenic mutations and showcase the potential clinical application of this technique, pending further optimization.


Asunto(s)
Sistemas CRISPR-Cas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Edición Génica , Mutación , Oncogenes/genética , Organoides , Alelos , Sustitución de Aminoácidos , Animales , Células Epiteliales/metabolismo , Terapia Genética/métodos , Hepatocitos/metabolismo , Humanos , Análisis de Secuencia de ADN
6.
iScience ; 24(3): 102153, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33665571

RESUMEN

Induced pluripotency provides a tool to explore mechanisms underlying establishment, maintenance, and differentiation of naive pluripotent stem cells (nPSCs). Here, we report that self-renewal of nPSCs requires minimal Sox2 expression (Sox2-low). Sox2-low nPSCs do not show impaired neuroectoderm specification and differentiate efficiently in vitro into all embryonic germ lineages. Strikingly, upon the removal of self-renewing cues Sox2-low nPSCs differentiate into both embryonic and extraembryonic cell fates in vitro and in vivo. This differs from previous studies which only identified conditions that allowed cells to differentiate to one fate or the other. At the single-cell level self-renewing Sox2-low nPSCs exhibit a naive molecular signature. However, they display a nearer trophoblast identity than controls and decreased ability of Oct4 to bind naïve-associated regulatory sequences. In sum, this work defines wild-type levels of Sox2 as a restrictor of developmental potential and suggests perturbation of naive network as a mechanism to increase cell plasticity.

8.
Cell ; 181(6): 1291-1306.e19, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32407674

RESUMEN

Enteroendocrine cells (EECs) sense intestinal content and release hormones to regulate gastrointestinal activity, systemic metabolism, and food intake. Little is known about the molecular make-up of human EEC subtypes and the regulated secretion of individual hormones. Here, we describe an organoid-based platform for functional studies of human EECs. EEC formation is induced in vitro by transient expression of NEUROG3. A set of gut organoids was engineered in which the major hormones are fluorescently tagged. A single-cell mRNA atlas was generated for the different EEC subtypes, and their secreted products were recorded by mass-spectrometry. We note key differences to murine EECs, including hormones, sensory receptors, and transcription factors. Notably, several hormone-like molecules were identified. Inter-EEC communication is exemplified by secretin-induced GLP-1 secretion. Indeed, individual EEC subtypes carry receptors for various EEC hormones. This study provides a rich resource to study human EEC development and function.


Asunto(s)
Células Enteroendocrinas/metabolismo , ARN Mensajero/genética , Células Cultivadas , Hormonas Gastrointestinales/genética , Tracto Gastrointestinal/metabolismo , Péptido 1 Similar al Glucagón/genética , Humanos , Organoides/metabolismo , Factores de Transcripción/genética , Transcriptoma/genética
9.
Cell Stem Cell ; 25(3): 342-356.e7, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31422913

RESUMEN

The gastric corpus epithelium is the thickest part of the gastrointestinal tract and is rapidly turned over. Several markers have been proposed for gastric corpus stem cells in both isthmus and base regions. However, the identity of isthmus stem cells (IsthSCs) and the interaction between distinct stem cell populations is still under debate. Here, based on unbiased genetic labeling and biophysical modeling, we show that corpus glands are compartmentalized into two independent zones, with slow-cycling stem cells maintaining the base and actively cycling stem cells maintaining the pit-isthmus-neck region through a process of "punctuated" neutral drift dynamics. Independent lineage tracing based on Stmn1 and Ki67 expression confirmed that rapidly cycling IsthSCs maintain the pit-isthmus-neck region. Finally, single-cell RNA sequencing (RNA-seq) analysis is used to define the molecular identity and lineage relationship of a single, cycling, IsthSC population. These observations define the identity and functional behavior of IsthSCs.


Asunto(s)
Células Madre Adultas/citología , Mucosa Gástrica/citología , Estómago/citología , Células Madre Adultas/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular , Linaje de la Célula , Autorrenovación de las Células , Células Cultivadas , Mucosa Gástrica/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Estatmina/metabolismo , Nicho de Células Madre
10.
Gut ; 68(1): 49-61, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29141958

RESUMEN

OBJECTIVE: Human intestinal epithelial organoids (IEOs) are increasingly being recognised as a highly promising translational research tool. However, our understanding of their epigenetic molecular characteristics and behaviour in culture remains limited. DESIGN: We performed genome-wide DNA methylation and transcriptomic profiling of human IEOs derived from paediatric/adult and fetal small and large bowel as well as matching purified human gut epithelium. Furthermore, organoids were subjected to in vitro differentiation and genome editing using CRISPR/Cas9 technology. RESULTS: We discovered stable epigenetic signatures which define regional differences in gut epithelial function, including induction of segment-specific genes during cellular differentiation. Established DNA methylation profiles were independent of cellular environment since organoids retained their regional DNA methylation over prolonged culture periods. In contrast to paediatric and adult organoids, fetal gut-derived organoids showed distinct dynamic changes of DNA methylation and gene expression in culture, indicative of an in vitro maturation. By applying CRISPR/Cas9 genome editing to fetal organoids, we demonstrate that this process is partly regulated by TET1, an enzyme involved in the DNA demethylation process. Lastly, generating IEOs from a child diagnosed with gastric heterotopia revealed persistent and distinct disease-associated DNA methylation differences, highlighting the use of organoids as disease-specific research models. CONCLUSIONS: Our study demonstrates striking similarities of epigenetic signatures in mucosa-derived IEOs with matching primary epithelium. Moreover, these results suggest that intestinal stem cell-intrinsic DNA methylation patterns establish and maintain regional gut specification and are involved in early epithelial development and disease.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Células Epiteliales/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Organoides/metabolismo , Transcriptoma , Diferenciación Celular , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos
11.
J Vis Exp ; (125)2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28745625

RESUMEN

CRISPR/Cas9 technology has greatly improved the feasibility and speed of loss-of-function studies that are essential in understanding gene function. In higher eukaryotes, paralogous genes can mask a potential phenotype by compensating the loss of a gene, thus limiting the information that can be obtained from genetic studies relying on single gene knockouts. We have developed a novel, rapid cloning method for guide RNA (gRNA) concatemers in order to create multi-gene knockouts following a single round of transfection in mouse small intestinal organoids. Our strategy allows for the concatemerization of up to four individual gRNAs into a single vector by performing a single Golden Gate shuffling reaction with annealed gRNA oligos and a pre-designed retroviral vector. This allows either the simultaneous knockout of up to four different genes, or increased knockout efficiency following the targeting of one gene by multiple gRNAs. In this protocol, we show in detail how to efficiently clone multiple gRNAs into the retroviral CRISPR-concatemer vector and how to achieve highly efficient electroporation in intestinal organoids. As an example, we show that simultaneous knockout of two pairs of genes encoding negative regulators of the Wnt signaling pathway (Axin1/2 and Rnf43/Znrf3) renders intestinal organoids resistant to the withdrawal of key growth factors.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Técnicas de Inactivación de Genes/métodos , Animales , Ratones , Ratones Noqueados , Organoides , Transfección
12.
Physiology (Bethesda) ; 32(4): 278-289, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28615312

RESUMEN

Among the endodermal tissues of adult mammals, the gastrointestinal (GI) epithelium exhibits the highest turnover rate. As the ingested food moves along the GI tract, gastric acid, digestive enzymes, and gut resident microbes aid digestion as well as nutrient and mineral absorption. Due to the harsh luminal environment, replenishment of new epithelial cells is essential to maintain organ structure and function during routine turnover and injury repair. Tissue-specific adult stem cells in the GI tract serve as a continuous source for this immense regenerative activity. Tissue homeostasis is achieved by a delicate balance between gain and loss of cells. In homeostasis, temporal tissue damage is rapidly restored by well-balanced tissue regeneration, whereas prolonged imbalance may result in diverse pathologies of homeostasis and injury repair. Starting with a summary of the current knowledge of GI tract homeostasis, we continue with providing models of acute injury and chronic diseases. Finally, we will discuss how primary organoid cultures allow new insights into the mechanisms of homeostasis, injury repair, and disease, and how this novel 3D culture system has the potential to translate into the clinic.


Asunto(s)
Células Epiteliales/fisiología , Tracto Gastrointestinal/fisiología , Regeneración/fisiología , Células Madre/citología , Cicatrización de Heridas/fisiología , Animales , Homeostasis/fisiología , Humanos
13.
Nat Methods ; 14(3): 287-289, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28135257

RESUMEN

Loss-of-function studies are key for investigating gene function, and CRISPR technology has made genome editing widely accessible in model organisms and cells. However, conditional gene inactivation in diploid cells is still difficult to achieve. Here, we present CRISPR-FLIP, a strategy that provides an efficient, rapid and scalable method for biallelic conditional gene knockouts in diploid or aneuploid cells, such as pluripotent stem cells, 3D organoids and cell lines, by co-delivery of CRISPR-Cas9 and a universal conditional intronic cassette.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Células Madre Embrionarias/citología , Edición Génica/métodos , Técnicas de Inactivación de Genes/métodos , beta Catenina/genética , Animales , Línea Celular , Genoma/genética , Células HEK293 , Humanos , Ratones
14.
Stem Cell Reports ; 8(1): 112-124, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28041877

RESUMEN

Loss-of-function mutations in the cytosine-5 RNA methylase NSUN2 cause neurodevelopmental disorders in humans, yet the underlying cellular processes leading to the symptoms that include microcephaly remain unclear. Here, we show that NSUN2 is expressed in early neuroepithelial progenitors of the developing human brain, and its expression is gradually reduced during differentiation of human neuroepithelial stem (NES) cells in vitro. In the developing Nsun2-/- mouse cerebral cortex, intermediate progenitors accumulate and upper-layer neurons decrease. Loss of NSUN2-mediated methylation of tRNA increases their endonucleolytic cleavage by angiogenin, and 5' tRNA fragments accumulate in Nsun2-/- brains. Neural differentiation of NES cells is impaired by both NSUN2 depletion and the presence of angiogenin. Since repression of NSUN2 also inhibited neural cell migration toward the chemoattractant fibroblast growth factor 2, we conclude that the impaired differentiation capacity in the absence of NSUN2 may be driven by the inability to efficiently respond to growth factors.


Asunto(s)
Diferenciación Celular/genética , Citosina/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , ARN/metabolismo , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Movimiento Celular , Femenino , Técnicas de Inactivación de Genes , Humanos , Metilación , Metiltransferasas/genética , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Organogénesis/genética , Ribonucleasa Pancreática/farmacología
15.
Dev Biol ; 420(2): 271-277, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27983963

RESUMEN

Approaches based on genetic modification have been invaluable for investigating a wide array of biological processes, with gain- and loss-of-function approaches frequently used to investigate gene function. However, the presence of paralogues, and hence possible genetic compensation, for many genes necessitates the knockout (KO) of all paralogous genes in order to observe clear phenotypic change. CRISPR technology, the most recently described tool for gene editing, can generate KOs with unprecedented ease and speed and has been used in adult stem cell-derived organoids for single gene knockout, gene knock-in and gene correction. However, the simultaneous targeting of multiple genes in organoids by CRISPR technology has not previously been described. Here we describe a rapid, scalable and cost effective method for generating double knockouts in organoids. By concatemerizing multiple gRNA expression cassettes, we generated a 'gRNA concatemer vector'. Our method allows the rapid assembly of annealed synthetic DNA oligos into the final vector in a single step. This approach facilitates simultaneous delivery of multiple gRNAs to allow up to 4 gene KO in one step, or potentially to increase the efficiency of gene knockout by providing multiple gRNAs targeting one gene. As a proof of concept, we knocked out negative regulators of the Wnt pathway in small intestinal organoids, thereby removing their growth dependence on the exogenous Wnt enhancer, R-spondin1.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , Intestino Delgado/metabolismo , Organoides/metabolismo , Animales , Vectores Genéticos , Intestino Delgado/crecimiento & desarrollo , Ratones , Técnicas de Cultivo de Órganos , Organoides/crecimiento & desarrollo , ARN Guía de Kinetoplastida/genética , Vía de Señalización Wnt/genética
16.
Nat Protoc ; 11(9): 1724-43, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27560176

RESUMEN

Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol.


Asunto(s)
Células Madre Adultas/citología , Técnicas de Cultivo de Célula/métodos , Autorrenovación de las Células , Ingeniería Genética/métodos , Hígado/citología , Organoides/citología , Páncreas/citología , Células Madre Adultas/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Organoides/metabolismo
17.
BMB Rep ; 48(12): 655-67, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26634741

RESUMEN

Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging.


Asunto(s)
Células Madre Adultas/citología , Rastreo Celular/métodos , Animales , Linaje de la Célula , Homeostasis , Humanos , Imagen Óptica/métodos
18.
J Vis Exp ; (90): e51765, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25146755

RESUMEN

Lgr5-positive stem cells can be supplemented with the essential growth factors Egf, Noggin, and R-Spondin, which allows us to culture ever-expanding primary 3D epithelial structures in vitro. Both the architecture and physiological properties of these 'mini-guts', also called organoids, closely resemble their in vivo counterparts. This makes them an attractive model system for the small intestinal epithelium. Using retroviral transduction, functional genetics can now be performed by conditional gene overexpression or knockdown. This video demonstrates the procedure of organoid culture, the generation of retroviruses, and the retroviral transduction of organoids to assist phenotypic analysis of the small intestinal epithelium in vitro. This novel organotypic model system in combination with retroviral mediated gene expression provides a valuable tool for rapid analysis of gene function in vitro without the need of costly and time-consuming generation for transgenic animals.


Asunto(s)
Intestino Delgado/fisiología , Intestino Delgado/virología , Técnicas de Cultivo de Órganos/métodos , Infecciones por Retroviridae/virología , Retroviridae/genética , Animales , Técnicas de Silenciamiento del Gen/métodos , Humanos , Ratones , Receptores Acoplados a Proteínas G , Transducción Genética , Transgenes
19.
PLoS One ; 8(10): e76871, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24204693

RESUMEN

Under previously developed culture conditions, mouse and human intestinal epithelia can be cultured and expanded over long periods. These so-called organoids recapitulate the three-dimensional architecture of the gut epithelium, and consist of all major intestinal cell types. One key advantage of these ex vivo cultures is their accessibility to live imaging. So far the establishment of transgenic fluorescent reporter organoids has required the generation of transgenic mice, a laborious and time-consuming process, which cannot be extended to human cultures. Here we present a transfection protocol that enables the generation of recombinant mouse and human reporter organoids using BAC (bacterial artificial chromosome) technology.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Epitelio/metabolismo , Organoides/metabolismo , Transfección/métodos , Animales , Epitelio/crecimiento & desarrollo , Ingeniería Genética/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/genética , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal , Organoides/citología , Técnicas de Cultivo de Tejidos/métodos , Transgenes/genética , Tubulina (Proteína)/genética , Grabación en Video/métodos , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA