Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuropathol Appl Neurobiol ; 49(1): e12851, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36181265

RESUMEN

AIMS: Axonal injury in multiple sclerosis (MS) and experimental models is most frequently detected in acutely demyelinating lesions. We recently reported a compensatory neuronal response, where mitochondria move to the acutely demyelinated axon and increase the mitochondrial content following lysolecithin-induced demyelination. We termed this homeostatic phenomenon, which is also evident in MS, the axonal response of mitochondria to demyelination (ARMD). The aim of this study is to determine whether ARMD is consistently evident in experimental demyelination and how its perturbation relates to axonal injury. METHODS: In the present study, we assessed axonal mitochondrial content as well as axonal mitochondrial respiratory chain complex IV activity (cytochrome c oxidase or COX) of axons and related these to axonal injury in nine different experimental disease models. We used immunofluorescent histochemistry as well as sequential COX histochemistry followed by immunofluorescent labelling of mitochondria and axons. RESULTS: We found ARMD a consistent and robust phenomenon in all experimental disease models. The increase in mitochondrial content within demyelinated axons, however, was not always accompanied by a proportionate increase in complex IV activity, particularly in highly inflammatory models such as experimental autoimmune encephalomyelitis (EAE). Axonal complex IV activity inversely correlated with the extent of axonal injury in experimental disease models. CONCLUSIONS: Our findings indicate that ARMD is a consistent and prominent feature and emphasise the importance of complex IV activity in the context of ARMD, especially in autoimmune inflammatory demyelination, paving the way for the development of novel neuroprotective therapies.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Esclerosis Múltiple/patología , Axones/patología , Encefalomielitis Autoinmune Experimental/patología , Neuronas/patología , Mitocondrias/patología
2.
Eur J Immunol ; 52(8): 1335-1349, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35579560

RESUMEN

CD4+ FOXP3+ Tregs are currently explored to develop cell therapies against immune-mediated disorders, with an increasing focus on antigen receptor-engineered Tregs. Deciphering their mode of action is necessary to identify the strengths and limits of this approach. Here, we addressed this issue in an autoimmune disease of the CNS, EAE. Following disease induction, autoreactive Tregs upregulated LAG-3 and CTLA-4 in LNs, while IL-10 and amphiregulin (AREG) were increased in CNS Tregs. Using genetic approaches, we demonstrated that IL-10, CTLA-4, and LAG-3 were nonredundantly required for the protective function of antigen receptor-engineered Tregs against EAE in cell therapy whereas AREG was dispensable. Treg-derived IL-10 and CTLA-4 were both required to suppress acute autoreactive CD4+ T-cell activation, which correlated with disease control. These molecules also affected the accumulation in the recipients of engineered Tregs themselves, underlying complex roles for these molecules. Noteworthy, despite the persistence of the transferred Tregs and their protective effect, autoreactive T cells eventually accumulated in the spleen of treated mice. In conclusion, this study highlights the remarkable power of antigen receptor-engineered Tregs to appropriately provide multiple suppressive factors nonredundantly necessary to prevent autoimmune attacks.


Asunto(s)
Autoinmunidad , Enfermedades del Sistema Inmune , Animales , Antígeno CTLA-4 , Tratamiento Basado en Trasplante de Células y Tejidos , Factores de Transcripción Forkhead/genética , Interleucina-10 , Ratones , Receptores de Antígenos , Linfocitos T Reguladores
3.
Sci Adv ; 7(7)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33579710

RESUMEN

The gut microbiota fundamentally regulates intestinal homeostasis and disease partially through mechanisms that involve modulation of regulatory T cells (Tregs), yet how the microbiota-Treg cross-talk is physiologically controlled is incompletely defined. Here, we report that prostaglandin E2 (PGE2), a well-known mediator of inflammation, inhibits mucosal Tregs in a manner depending on the gut microbiota. PGE2 through its receptor EP4 diminishes Treg-favorable commensal microbiota. Transfer of the gut microbiota that was modified by PGE2-EP4 signaling modulates mucosal Treg responses and exacerbates intestinal inflammation. Mechanistically, PGE2-modified microbiota regulates intestinal mononuclear phagocytes and type I interferon signaling. Depletion of mononuclear phagocytes or deficiency of type I interferon receptor diminishes PGE2-dependent Treg inhibition. Together, our findings provide emergent evidence that PGE2-mediated disruption of microbiota-Treg communication fosters intestinal inflammation.


Asunto(s)
Microbioma Gastrointestinal , Linfocitos T Reguladores , Dinoprostona/farmacología , Humanos , Inflamación , Subtipo EP2 de Receptores de Prostaglandina E
4.
Front Immunol ; 11: 1830, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117327

RESUMEN

Helminth parasites are effective in biasing Th2 immunity and inducing regulatory pathways that minimize excessive inflammation within their hosts, thus allowing chronic infection to occur whilst also suppressing bystander atopic or autoimmune diseases. Multiple sclerosis (MS) is a severe autoimmune disease characterized by inflammatory lesions within the central nervous system; there are very limited therapeutic options for the progressive forms of the disease and none are curative. Here, we used the experimental autoimmune encephalomyelitis (EAE) model to examine if the intestinal helminth Heligmosomoides polygyrus and its excretory/secretory products (HES) are able to suppress inflammatory disease. Mice infected with H. polygyrus at the time of immunization with the peptide used to induce EAE (myelin-oligodendrocyte glycoprotein, pMOG), showed a delay in the onset and peak severity of EAE disease, however, treatment with HES only showed a marginal delay in disease onset. Mice that received H. polygyrus 4 weeks prior to EAE induction were also not significantly protected. H. polygyrus secretes a known TGF-ß mimic (Hp-TGM) and simultaneous H. polygyrus infection with pMOG immunization led to a significant expansion of Tregs; however, administering the recombinant Hp-TGM to EAE mice failed to replicate the EAE protection seen during infection, indicating that this may not be central to the disease protecting mechanism. Mice infected with H. polygyrus also showed a systemic Th2 biasing, and restimulating splenocytes with pMOG showed release of pMOG-specific IL-4 as well as suppression of inflammatory IL-17A. Notably, a Th2-skewed response was found only in mice infected with H. polygyrus at the time of EAE induction and not those with a chronic infection. Furthermore, H. polygyrus failed to protect against disease in IL-4Rα-/- mice. Together these results indicate that the EAE disease protective mechanism of H. polygyrus is likely to be predominantly Th2 deviation, and further highlights Th2-biasing as a future therapeutic strategy for MS.


Asunto(s)
Antígenos Helmínticos/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Receptores de Superficie Celular/inmunología , Infecciones por Strongylida/inmunología , Células Th2/inmunología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nematospiroides dubius/inmunología
5.
Acta Neuropathol ; 140(2): 143-167, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32572598

RESUMEN

Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochrome c oxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons, and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation. Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.


Asunto(s)
Enfermedades Desmielinizantes/patología , Mitocondrias/patología , Esclerosis Múltiple/patología , Degeneración Nerviosa/patología , Neuroprotección/fisiología , Animales , Axones/patología , Humanos , Ratones , Biogénesis de Organelos
6.
Eur J Immunol ; 49(1): 112-120, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30485411

RESUMEN

T cell adaptation is an important peripheral tolerogenic process which ensures that the T cell population can respond effectively to pathogens but remains tolerant to self-antigens. We probed the mechanisms of T cell adaptation using an experimental autoimmune encephalomyelitis (EAE) model in which the fate of autopathogenic T cells could be followed. We demonstrated that immunisation with a high dose of myelin basic protein (MBP) peptide and complete Freund's adjuvant failed to effectively initiate EAE, in contrast to low dose MBP peptide immunisation which readily induced disease. The proportion of autopathogenic CD4+ T cells in the central nervous system (CNS) of mice immunised with a high dose of MBP peptide was not significantly different to mice immunised with a low dose. However, autopathogenic T cells in mice immunised with high dose MBP peptide had an unresponsive phenotype in ex vivo recall assays. Importantly, whilst expression of PD-1 was increased on adapted CD4+ T cells within the CNS, loss of PD-1 function did not prevent the development of the unresponsive state. The lack of a role for PD-1 in the acquisition of the adapted state stands in striking contrast to the reported functional importance of PD-1 in T cell unresponsiveness in other disease models.


Asunto(s)
Sistema Nervioso Central/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T/inmunología , Inmunidad Adaptativa , Animales , Autoantígenos/inmunología , Células Cultivadas , Anergia Clonal , Modelos Animales de Enfermedad , Humanos , Tolerancia Inmunológica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Básica de Mielina/inmunología , Fragmentos de Péptidos/inmunología , Regulación hacia Arriba
7.
Immunol Cell Biol ; 96(10): 1049-1059, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29758102

RESUMEN

Inflammatory bowel disease (IBD) is a condition of chronic inflammatory intestinal disorder with increasing prevalence but limited effective therapies. The purine metabolic pathway is involved in various inflammatory processes including IBD. However, the mechanisms through which purine metabolism modulates IBD remain to be established. Here, we found that mucosal expression of genes involved in the purine metabolic pathway is altered in patients with active ulcerative colitis (UC), which is associated with elevated gene expression signatures of the group 3 innate lymphoid cell (ILC3)-interleukin (IL)-22 pathway. In mice, blockade of ectonucleotidases (NTPDases), critical enzymes for purine metabolism by hydrolysis of extracellular adenosine 5'-triphosphate (eATP) into adenosine, exacerbates dextran-sulfate sodium-induced intestinal injury. This exacerbation of colitis is associated with reduction of colonic IL-22-producing ILC3s, which afford essential protection against intestinal inflammation, and is rescued by exogenous IL-22. Mechanistically, activation of ILC3s for IL-22 production is reciprocally mediated by eATP and adenosine. These findings reveal that the NTPDase-mediated balance between eATP and adenosine regulates ILC3 cell function to provide protection against intestinal injury and suggest potential therapeutic strategies for treating IBD by targeting the purine-ILC3 axis.


Asunto(s)
Colitis/etiología , Colitis/metabolismo , Inmunidad Innata , Linfocitos/inmunología , Linfocitos/metabolismo , Purinas/metabolismo , Animales , Biomarcadores , Colitis/patología , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Citometría de Flujo , Perfilación de la Expresión Génica , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Transcriptoma
8.
Front Immunol ; 9: 264, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29535709

RESUMEN

Several inflammatory diseases including multiple sclerosis and inflammatory bowel disease have been associated with dysfunctional and/or reduced numbers of Foxp3+ regulatory T cells (Treg). While numerous mechanisms of action have been discovered by which Treg can exert their function, disease-specific Treg requirements remain largely unknown. We found that the integrin αv, which can pair with several ß subunits including ß8, is highly upregulated in Treg at sites of inflammation. Using mice that lacked αv expression or ß8 expression specifically in Treg, we demonstrate that there was no deficit in Treg accumulation in the central nervous system during experimental autoimmune encephalomyelitis and no difference in the resolution of disease compared to control mice. In contrast, during a curative T cell transfer model of colitis, Treg lacking all αv integrins were found at reduced proportions and numbers in the inflamed gut. This led to a quantitative impairment in the ability of αv-deficient Treg to reverse disease when Treg numbers in the inflamed colon were below a threshold. Increase of the number of curative Treg injected was able to rescue this phenotype, indicating that αv integrins were not required for the immunosuppressive function of Treg per se. In accordance with this, αv deficiency did not impact on the capacity of Treg to suppress proliferation of naive conventional T cells in vitro as well as in vivo. These observations demonstrate that despite the general upregulation of αv integrins in Treg at sites of inflammation, they are relevant for adequate Treg accumulation only in specific disease settings. The understanding of disease-specific mechanisms of action by Treg has clear implications for Treg-targeted therapies.


Asunto(s)
Colitis/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Inflamación/inmunología , Integrina alfaV/inmunología , Linfocitos T Reguladores/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Ratones , Ratones Noqueados
9.
Thorax ; 73(11): 1081-1084, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29574419

RESUMEN

Acute lung injury is a neutrophil-dominant, life-threatening disease without effective therapies and better understanding of the pathophysiological mechanisms involved is an urgent need. Here we show that interleukin (IL)-22 is produced from innate lymphoid cells (ILC) and is responsible for suppression of experimental lung neutrophilic inflammation. Blocking prostaglandin E2 (PGE2) synthesis reduces lung ILCs and IL-22 production, resulting in exacerbation of lung neutrophilic inflammation. In contrast, activation of the PGE2 receptor EP4 prevents acute lung inflammation. We thus demonstrate a mechanism for production of innate IL-22 in the lung during acute injury, highlighting potential therapeutic strategies for control of lung neutrophilic inflammation by targeting the PGE2/ILC/IL-22 axis.


Asunto(s)
Dinoprostona/farmacología , Inmunidad Innata/efectos de los fármacos , Interleucinas/biosíntesis , Linfocitos/metabolismo , Neumonía/prevención & control , Animales , Modelos Animales de Enfermedad , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Neumonía/inmunología , Neumonía/metabolismo , Interleucina-22
10.
J Immunol ; 200(3): 1169-1187, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29263216

RESUMEN

The disposal of apoptotic bodies by professional phagocytes is crucial to effective inflammation resolution. Our ability to improve the disposal of apoptotic bodies by professional phagocytes is impaired by a limited understanding of the molecular mechanisms that regulate the engulfment and digestion of the efferocytic cargo. Macrophages are professional phagocytes necessary for liver inflammation, fibrosis, and resolution, switching their phenotype from proinflammatory to restorative. Using sterile liver injury models, we show that the STAT3-IL-10-IL-6 axis is a positive regulator of macrophage efferocytosis, survival, and phenotypic conversion, directly linking debris engulfment to tissue repair.


Asunto(s)
Interleucina-10/metabolismo , Interleucina-6/metabolismo , Cirrosis Hepática/patología , Hígado/lesiones , Macrófagos/inmunología , Fagocitosis/inmunología , Factor de Transcripción STAT3/metabolismo , Traslado Adoptivo , Animales , Apoptosis/inmunología , Humanos , Hígado/patología , Macrófagos/trasplante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis/inmunología , Regeneración/fisiología , Pez Cebra/embriología
11.
J Allergy Clin Immunol ; 141(1): 152-162, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28583370

RESUMEN

BACKGROUND: Atopic dermatitis (AD) and allergic contact dermatitis (ACD) are both forms of eczema and are common inflammatory skin diseases with a central role of T cell-derived IL-22 in their pathogenesis. Although prostaglandin (PG) E2 is known to promote inflammation, little is known about its role in processes related to AD and ACD development, including IL-22 upregulation. OBJECTIVES: We sought to investigate whether PGE2 has a role in IL-22 induction and development of ACD, which has increased prevalence in patients with AD. METHODS: T-cell cultures and in vivo sensitization of mice with haptens were used to assess the role of PGE2 in IL-22 production. The involvement of PGE2 receptors and their downstream signals was also examined. The effects of PGE2 were evaluated by using the oxazolone-induced ACD mouse model. The relationship of PGE2 and IL-22 signaling pathways in skin inflammation were also investigated by using genomic profiling in human lesional AD skin. RESULTS: PGE2 induces IL-22 from T cells through its receptors, E prostanoid receptor (EP) 2 and EP4, and involves cyclic AMP signaling. Selective deletion of EP4 in T cells prevents hapten-induced IL-22 production in vivo, and limits atopic-like skin inflammation in the oxazolone-induced ACD model. Moreover, both PGE2 and IL-22 pathway genes were coordinately upregulated in human AD lesional skin but were at less than significant detection levels after corticosteroid or UVB treatments. CONCLUSIONS: Our results define a crucial role for PGE2 in promoting ACD by facilitating IL-22 production from T cells.


Asunto(s)
Dermatitis Alérgica por Contacto/inmunología , Dinoprostona/inmunología , Interleucinas/inmunología , Piel/inmunología , Linfocitos T/inmunología , Animales , Dermatitis Alérgica por Contacto/genética , Dermatitis Alérgica por Contacto/patología , Dinoprostona/genética , Humanos , Interleucinas/genética , Ratones , Ratones Noqueados , Piel/patología , Linfocitos T/patología , Interleucina-22
12.
Sci Signal ; 10(508)2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29208683

RESUMEN

Focal adhesion kinase (FAK) mediates tumor cell-intrinsic behaviors that promote tumor growth and metastasis. We previously showed that FAK also induces the expression of inflammatory genes that inhibit antitumor immunity in the microenvironment. We identified a crucial, previously unknown role for the dual-function cytokine interleukin-33 (IL-33) in FAK-dependent immune evasion. In murine squamous cell carcinoma (SCC) cells, specifically nuclear FAK enhanced the expression of the genes encoding IL-33, the chemokine CCL5, and the soluble, secreted form of the IL-33 receptor, called soluble ST2 (sST2). The abundance of IL-33 and CCL5 was increased in FAK-positive SCC cells but not in normal keratinocytes. IL-33 associated with FAK in the nucleus, and the FAK-IL-33 complex interacted with a network of chromatin modifiers and transcriptional regulators, including TAF9, WDR82, and BRD4, which promote the activity of nuclear factor κB (NF-κB) and its induction of genes encoding chemokines, including CCL5. We did not detect secretion of IL-33 from FAK-positive SCC cells; thus, we propose that the increased production and secretion of sST2 likely sequesters IL-33 secreted by other cell types within the tumor environment, thus blocking its stimulatory effects on infiltrating host immune cells. Depleting FAK, IL-33, or sST2 from SCC cells before implantation induced tumor regression in syngeneic mice, except when CD8+ T cells were co-depleted. Our data provide mechanistic insight into how FAK controls the tumor immune environment, namely, through a transcriptional regulatory network mediated by nuclear IL-33. Targeting this axis may boost antitumor immunity in patients.


Asunto(s)
Carcinoma de Células Escamosas/inmunología , Quinasa 1 de Adhesión Focal/metabolismo , Redes Reguladoras de Genes , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Neoplasias Cutáneas/metabolismo , Escape del Tumor/genética , Animales , Carcinoma de Células Escamosas/genética , Núcleo Celular/inmunología , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quinasa 1 de Adhesión Focal/genética , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/genética , Isoinjertos , Queratinocitos/inmunología , Ratones , Ratones Transgénicos , Proteómica , Células Tumorales Cultivadas
13.
Nat Commun ; 8(1): 1741, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170498

RESUMEN

Helminth parasites defy immune exclusion through sophisticated evasion mechanisms, including activation of host immunosuppressive regulatory T (Treg) cells. The mouse parasite Heligmosomoides polygyrus can expand the host Treg population by secreting products that activate TGF-ß signalling, but the identity of the active molecule is unknown. Here we identify an H. polygyrus TGF-ß mimic (Hp-TGM) that replicates the biological and functional properties of TGF-ß, including binding to mammalian TGF-ß receptors and inducing mouse and human Foxp3+ Treg cells. Hp-TGM has no homology with mammalian TGF-ß or other members of the TGF-ß family, but is a member of the complement control protein superfamily. Thus, our data indicate that through convergent evolution, the parasite has acquired a protein with cytokine-like function that is able to exploit an endogenous pathway of immunoregulation in the host.


Asunto(s)
Imitación Molecular/inmunología , Nematospiroides dubius/inmunología , Nematospiroides dubius/patogenicidad , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos Helmínticos/química , Antígenos Helmínticos/genética , Antígenos Helmínticos/inmunología , Femenino , Proteínas del Helminto/química , Proteínas del Helminto/genética , Proteínas del Helminto/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Evasión Inmune/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Imitación Molecular/genética , Nematospiroides dubius/genética , Unión Proteica , Dominios Proteicos , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/parasitología
14.
Transpl Immunol ; 45: 15-21, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28797737

RESUMEN

INTRODUCTION: IRI results from the interruption then reinstatement of an organ's blood supply, and this poses a significant problem in liver transplantation and resectional surgery. In this paper, we explore the role T cells play in the pathogenesis of this injury. MATERIALS & METHODS: We used an in vivo murine model of warm partial hepatic IRI, genetically-modified mice, in vivo antibody depletion, adoptive cell transfer and flow cytometry to determine which lymphocyte subsets contribute to pathology. Injury was assessed by measuring serum alanine aminotransfersase (ALT) and by histological examination of liver tissue sections. RESULTS: The absence of T cells (CD3εKO) is associated with significant protection from injury (p=0.010). Through a strategy of antibody depletion it appears that NKT cells (p=0.0025), rather than conventional T (CD4+ or CD8+) (p=0.11) cells that are the key mediators of injury. DISCUSSION: Our results indicate that tissue-resident NKT cells, but not other lymphocyte populations are responsible for the injury in hepatic IRI. Targeting the activation of NKT cells and/or their effector apparatus would be a novel approach in protecting the liver during transplantation and resection surgery; this may allow us to expand our current criteria for surgery.


Asunto(s)
Trasplante de Hígado , Hígado/patología , Células T Asesinas Naturales/inmunología , Daño por Reperfusión/inmunología , Linfocitos T/inmunología , Animales , Complejo CD3/genética , Proteínas de Homeodominio/genética , Humanos , Hígado/metabolismo , Depleción Linfocítica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
15.
J Immunother Cancer ; 5: 17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28239470

RESUMEN

Immunotherapy has had remarkable success in the treatment of some cancer types. However, pancreatic cancer has remained largely refractory to immunotherapy, including immune checkpoint inhibitors. Recently, Jiang and colleagues identified a key role for FAK in regulating the composition of the fibrotic and immuno-suppressive pancreatic tumour niche, and showed that FAK inhibitors can be used in combination with immune checkpoint blockade and gemcitabine chemotherapy to significantly delay pancreatic tumour progression. This study further supports the use of FAK inhibitors in combination with immunotherapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Humanos , Inmunoterapia
16.
Wellcome Open Res ; 2: 67, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29707653

RESUMEN

Background: Non-alcoholic fatty liver disease (NAFLD) is a global health issue. Dietary methyl donor restriction is used to induce a NAFLD/non-alcoholic steatohepatitis (NASH) phenotype in rodents, however the extent to which this model reflects human NAFLD remains incompletely understood. To address this, we undertook hepatic transcriptional profiling of methyl donor restricted rodents and compared these to published human NAFLD datasets.              Methods: Adult C57BL/6J mice were maintained on control, choline deficient (CDD) or methionine/choline deficient (MCDD) diets for four weeks; the effects on methyl donor and lipid biology were investigated by bioinformatic analysis of hepatic gene expression profiles followed by a cross-species comparison with human expression data of all stages of NAFLD. Results: Compared to controls, expression of the very low density lipoprotein (VLDL) packaging carboxylesterases ( Ces1d, Ces1f, Ces3b) and the NAFLD risk allele Pnpla3 were suppressed in MCDD; with Pnpla3 and the liver predominant Ces isoform, Ces3b, also suppressed in CDD. With respect to 1-carbon metabolism, down-regulation of Chka, Chkb, Pcty1a, Gnmt and Ahcy with concurrent upregulation of Mat2a suggests a drive to maintain S-adenosylmethionine levels. There was minimal similarity between global gene expression patterns in either dietary intervention and any stage of human NAFLD, however some common transcriptomic changes in inflammatory, fibrotic and proliferative mediators were identified in MCDD, NASH and HCC. Conclusions: This study suggests suppression of VLDL assembly machinery may contribute to hepatic lipid accumulation in these models, but that CDD and MCDD rodent diets are minimally representative of human NAFLD at the transcriptional level.

17.
Immunity ; 44(5): 1114-26, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27192577

RESUMEN

Regulatory T (Treg) cells expressing Foxp3 transcripton factor are essential for immune homeostasis. They arise in the thymus as a separate lineage from conventional CD4(+)Foxp3(-) T (Tconv) cells. Here, we show that the thymic development of Treg cells depends on the expression of their endogenous cognate self-antigen. The formation of these cells was impaired in mice lacking this self-antigen, while Tconv cell development was not negatively affected. Thymus-derived Treg cells were selected by self-antigens in a specific manner, while autoreactive Tconv cells were produced through degenerate recognition of distinct antigens. These distinct modes of development were associated with the expression of T cell receptor of higher functional avidity for self-antigen by Treg cells than Tconv cells, a difference subsequently essential for the control of autoimmunity. Our study documents how self-antigens define the repertoire of thymus-derived Treg cells to subsequently endow this cell type with the capacity to undermine autoimmune attack.


Asunto(s)
Antígeno CTLA-4/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Glicoproteína Mielina-Oligodendrócito/metabolismo , Subgrupos de Linfocitos T/fisiología , Linfocitos T Reguladores/fisiología , Timo/inmunología , Animales , Autoantígenos/inmunología , Antígeno CTLA-4/genética , Células Cultivadas , Selección Clonal Mediada por Antígenos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/inmunología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Especificidad del Receptor de Antígeno de Linfocitos T/genética
18.
Science ; 351(6279): 1333-8, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26989254

RESUMEN

Systemic inflammation, which results from the massive release of proinflammatory molecules into the circulatory system, is a major risk factor for severe illness, but the precise mechanisms underlying its control are not fully understood. We observed that prostaglandin E2 (PGE2), through its receptor EP4, is down-regulated in human systemic inflammatory disease. Mice with reduced PGE2 synthesis develop systemic inflammation, associated with translocation of gut bacteria, which can be prevented by treatment with EP4 agonists. Mechanistically, we demonstrate that PGE2-EP4 signaling acts directly on type 3 innate lymphoid cells (ILCs), promoting their homeostasis and driving them to produce interleukin-22 (IL-22). Disruption of the ILC-IL-22 axis impairs PGE2-mediated inhibition of systemic inflammation. Hence, the ILC-IL-22 axis is essential in protecting against gut barrier dysfunction, enabling PGE2-EP4 signaling to impede systemic inflammation.


Asunto(s)
Dinoprostona/inmunología , Inflamación/inmunología , Interleucinas/inmunología , Intestinos/inmunología , Linfocitos/inmunología , Subtipo EP4 de Receptores de Prostaglandina E/inmunología , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Expresión Génica , Humanos , Inmunidad Innata , Inflamación/tratamiento farmacológico , Inflamación/microbiología , Intestinos/microbiología , Ratones , Subtipo EP4 de Receptores de Prostaglandina E/antagonistas & inhibidores , Subtipo EP4 de Receptores de Prostaglandina E/genética , Transducción de Señal , Interleucina-22
19.
Methods Mol Biol ; 1304: 81-90, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25863784

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is an animal model commonly used to investigate the inflammatory response in organ-specific autoimmunity and a model of the early immune responses of multiple sclerosis.This protocol outlines the methods used for the processing of peripheral immune tissues, the spleen and draining lymph nodes, as well as the site of inflammation, the central nervous system (CNS), for analyzing immune cell phenotype and function during murine EAE.


Asunto(s)
Sistema Nervioso Central/patología , Animales , Citocinas/metabolismo , Citometría de Flujo/métodos , Inmunofenotipificación/métodos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Ganglios Linfáticos/patología , Ratones , Bazo/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Factores de Transcripción/metabolismo
20.
Front Immunol ; 6: 575, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635791

RESUMEN

Dendritic cells (DC) play a crucial role in regulating T cell activation. Due to their capacity to shape the immune response, tolerogenic DC have been used to treat autoimmune diseases. In this study, we examined whether 1,25 dihydroxyvitamin D3-conditioned bone marrow-derived DC (VitD-BMDC) were able to limit the development of autoimmune pathology in experimental autoimmune encephalomyelitis (EAE). We found that VitD-BMDC had lower expression of MHC class II and co-stimulatory molecules and were less effective at priming autoreactive T cells in vitro. Using our recently described BMDC-driven model of EAE, we demonstrated that VitD-BMDC had a significantly reduced ability to initiate EAE. We found that the impaired ability of VitD-BMDC to initiate EAE was not due to T cell tolerization. Instead, we discovered that the addition of 1,25(OH)2D3 to BMDC cultures resulted in a significant reduction in the proportion of CD11c+ cells. Purified CD11c+ VitD-BMDC were significantly less effective at priming T cells in vitro yet were similarly capable of initiating EAE as vehicle-treated CD11c+ BMDC. This study demonstrates that in vitro assays of DC function can be a poor predictor of in vivo behavior and that CD11c+ VitD-BMDC are highly effective initiators of an autopathogenic T cell response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...