Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 93(32): 11259-11267, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34347442

RESUMEN

The Virus BioResistor (VBR) is a biosensor capable of rapid and sensitive detection of small protein disease markers using a simple dip-and-read modality. For example, the bladder cancer-associated protein DJ-1 (22 kDa) can be detected in human urine within 1.0 min with a limit of detection (LOD) of 10 pM. The VBR uses engineered virus particles as receptors to recognize and selectively bind the protein of interest. These virus particles are entrained in a conductive poly(3,4-ethylenedioxythiophene) or PEDOT channel. The electrical impedance of the channel increases when the target protein is bound by the virus particles. But VBRs exhibit a sensitivity that is inversely related to the molecular weight of the protein target. Thus, large proteins, such as IgG antibodies (150 kDa), can be undetectable even at high concentrations. We demonstrate that the electrochemical overoxidation of the VBR's PEDOT channel increases its electrical impedance, conferring enhanced sensitivity for both small and large proteins. Overoxidation makes possible the detection of two antibodies, undetectable at a normal VBR, with a limit of detection of 40 ng/mL (250 pM), and a dynamic range for quantitation extending to 600 ng/mL.


Asunto(s)
Técnicas Biosensibles , Compuestos Bicíclicos Heterocíclicos con Puentes , Humanos , Inmunoglobulina G , Límite de Detección , Polímeros
2.
ACS Appl Mater Interfaces ; 13(44): 51809-51828, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34310110

RESUMEN

Professor Chia-Kuang (Frank) Tsung made his scientific impact primarily through the atomic-level design of nanoscale materials for application in heterogeneous catalysis. He approached this challenge from two directions: above and below the material surface. Below the surface, Prof. Tsung synthesized finely controlled nanoparticles, primarily of noble metals and metal oxides, tailoring their composition and surface structure for efficient catalysis. Above the surface, he was among the first to leverage the tunability and stability of metal-organic frameworks (MOFs) to improve heterogeneous, molecular, and biocatalysts. This article, written by his former students, seeks first to commemorate Prof. Tsung's scientific accomplishments in three parts: (1) rationally designing nanocrystal surfaces to promote catalytic activity; (2) encapsulating nanocrystals in MOFs to improve catalyst selectivity; and (3) tuning the host-guest interaction between MOFs and guest molecules to inhibit catalyst degradation. The subsequent discussion focuses on building on the foundation laid by Prof. Tsung and on his considerable influence on his former group members and collaborators, both inside and outside of the lab.

4.
Angew Chem Int Ed Engl ; 59(26): 10574-10580, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32196846

RESUMEN

Controlling the surface composition of shaped bimetallic nanoparticles could offer precise tunability of geometric and electronic surface structure for new nanocatalysts. To achieve this goal, a platform for studying the intermixing process in a shaped nanoparticle was designed, using multilayered Pd-Ni-Pt core-shell nanocubes as precursors. Under mild conditions, the intermixing between Ni and Pt could be tuned by changing layer thickness and number, triggering intermixing while preserving nanoparticle shape. Intermixing of the two metals is monitored using transmission electron microscopy. The surface structure evolution is characterized using electrochemical methanol oxidation. DFT calculations suggest that the low-temperature mixing is enhanced by shorter diffusion lengths and strain introduced by the layered structure. The platform and insights presented are an advance toward the realization of shape-controlled multimetallic nanoparticles tailored to each potential application.

5.
ACS Nano ; 14(2): 1243-1295, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31895532

RESUMEN

Although Li-ion batteries have emerged as the battery of choice for electric vehicles and large-scale smart grids, significant research efforts are devoted to identifying materials that offer higher energy density, longer cycle life, lower cost, and/or improved safety compared to those of conventional Li-ion batteries based on intercalation electrodes. By moving beyond intercalation chemistry, gravimetric capacities that are 2-5 times higher than that of conventional intercalation materials (e.g., LiCoO2 and graphite) can be achieved. The transition to higher-capacity electrode materials in commercial applications is complicated by several factors. This Review highlights the developments of electrode materials and characterization tools for rechargeable lithium-ion batteries, with a focus on the structural and electrochemical degradation mechanisms that plague these systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...