Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lasers Med Sci ; 33(6): 1225-1236, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29453616

RESUMEN

Bone may be similar to geological formulations in many ways. Therefore, it may be logical to apply laser-based geological techniques in bone research. The mineral and element oxide composition of bioapatite can be estimated by mathematical models. Laser-induced plasma spectrometry (LIPS) has long been used in geology. This method may provide a possibility to determine the composition and concentration of element oxides forming the inorganic part of bones. In this study, we wished to standardize the LIPS technique and use mathematical calculations and models in order to determine CaO distribution and bone homogeneity using bovine shin bone samples. We used polished slices of five bovine shin bones. A portable LIPS instrument using high-power Nd++YAG laser pulses has been developed (OpLab, Budapest). Analysis of CaO distribution was carried out in a 10 × 10 sampling matrix applying 300-µm sampling intervals. We assessed both cortical and trabecular bone areas. Regions of interest (ROI) were determined under microscope. CaO peaks were identified in the 200-500 nm wavelength range. A mathematical formula was used to calculate the element oxide composition (wt%) of inorganic bone. We also applied two accepted mathematical approaches, the Bartlett's test and frequency distribution curve-based analysis, to determine the homogeneity of CaO distribution in bones. We were able to standardize the LIPS technique for bone research. CaO concentrations in the cortical and trabecular regions of B1-5 bones were 33.11 ± 3.99% (range 24.02-40.43%) and 27.60 ± 7.44% (range 3.58-39.51%), respectively. CaO concentrations highly corresponded to those routinely determined by ICP-OES. We were able to graphically demonstrate CaO distribution in both 2D and 3D. We also determined possible interrelations between laser-induced craters and bone structure units, which may reflect the bone structure and may influence the heterogeneity of CaO distributions. By using two different statistical methods, we could confirm if bone samples were homogeneous or not with respect to CaO concentration distribution. LIPS, a technique previously used in geology, may be included in bone research. Assessment of element oxide concentrations in the inorganic part of bone, as well as mathematical calculations may be useful to determine the content of CaO and other element oxides in bone, further analyze bone structure and homogeneity and possibly apply this research to normal, as well as diseased bones.


Asunto(s)
Densidad Ósea , Huesos/química , Geología/instrumentación , Rayos Láser , Gases em Plasma/química , Análisis Espectral/métodos , Animales , Huesos/diagnóstico por imagen , Compuestos de Calcio/análisis , Hueso Esponjoso/química , Hueso Esponjoso/diagnóstico por imagen , Bovinos , Modelos Biológicos , Modelos Teóricos , Óxidos/análisis , Óxidos/química , Espectrofotometría Atómica , Estadística como Asunto , Tomografía Computarizada por Rayos X
2.
Orv Hetil ; 155(45): 1783-93, 2014 Nov 09.
Artículo en Húngaro | MEDLINE | ID: mdl-25362641

RESUMEN

The structural similarities between the inorganic component of bone tissue and geological formations make it possible that mathematic models may be used to determine weight percentage composition of different mineral element oxides constituting the inorganic component of bone tissue. The determined weight percentage composition can be verified with the determination of element oxide concentration values by laser induced plasma spectroscopy and inductively coupled plasma optical emission spectrometry. It can be concluded from calculated weight percentage composition of the inorganic component of bone tissue and laboratory analyses that the properties of bone tissue are determined primarily by hydroxylapatite. The inorganic bone structure can be studied well by determining the calcium oxide concentration distribution using the laser induced plasma spectroscopy technique. In the present study, thin polished bone slides prepared from male bovine tibia were examined with laser induced plasma spectroscopy in a regular network and combined sampling system to derive the calculated calcium oxide concentration distribution. The superficial calcium oxide concentration distribution, as supported by "frequency distribution" curves, can be categorized into a number of groups. This, as such, helps in clearly demarcating the cortical and trabecular bone structures. Following analyses of bovine tibial bone, the authors found a positive association between the attenuation value, as determined by quantitative computer tomography and the "ρ" density, as used in geology. Furthermore, the calculated "ρ" density and the measured average calcium oxide concentration values showed inverse correlation.


Asunto(s)
Huesos/química , Compuestos de Calcio/análisis , Técnicas de Química Analítica/métodos , Rayos Láser , Modelos Teóricos , Óxidos/análisis , Oligoelementos/análisis , Animales , Matriz Ósea/química , Bovinos , Geología , Masculino , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...