Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomech Model Mechanobiol ; 17(4): 961-973, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29450740

RESUMEN

During total liquid ventilation, lung cells are exposed to perfluorocarbon (PFC) whose chemophysical properties highly differ from standard aqueous cell feeding medium (DMEM). We herein perform a systematic study of structural and mechanical properties of A549 alveolar epithelial cells in order to characterize their response to PFC exposure, using DMEM as control condition. Changes in F-actin structure, focal adhesion density and glycocalyx distribution are evaluated by confocal fluorescent microscopy. Changes in cell mechanics and adhesion are measured by multiscale magnetic twisting cytometry (MTC). Two different microrheological models (single Voigt and power law) are used to analyze the cell mechanics characterized by cytoskeleton (CSK) stiffness and characteristic relaxation times. Cell-matrix adhesion is analyzed using a stochastic multibond deadhesion model taking into account the non-reversible character of the cell response, allowing us to quantify the adhesion weakness and the number of associated bonds. The roles of F-actin structure and glycocalyx layer are evaluated by depolymerizing F-actin and degrading glycocalyx, respectively. Results show that PFC exposure consistently induces F-actin remodeling, CSK softening and adhesion weakening. These results demonstrate that PFC triggers an alveolar epithelial cell response herein evidenced by a decay in intracellular CSK tension, an adhesion weakening and a glycocalyx layer redistribution. These PFC-induced cell adjustments are consistent with the hypothesis that cells respond to a decrease in adhesion energy at cell surface. This adhesion energy can be even further reduced in the presence of surfactant adsorbed at the cell surface.


Asunto(s)
Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/fisiología , Fluorocarburos/farmacología , Células A549 , Actinas/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Fenómenos Biomecánicos , Adhesión Celular/efectos de los fármacos , Citocalasina D/farmacología , Adhesiones Focales/metabolismo , Glicocálix/metabolismo , Humanos , Polimerizacion , Polisacárido Liasas/metabolismo , Tensoactivos/farmacología
2.
Biol Cell ; 109(8): 293-311, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28597954

RESUMEN

BACKGROUND INFORMATION: The adenylate cyclase (CyaA) toxin is a major virulent factor of Bordetella pertussis, the causative agent of whooping cough. CyaA toxin is able to invade eukaryotic cells where it produces high levels of cyclic adenosine monophosphate (cAMP) affecting cellular physiology. Whether CyaA toxin can modulate cell matrix adhesion and mechanics of infected cells remains largely unknown. RESULTS: In this study, we use a recently proposed multiple bond force spectroscopy (MFS) with an atomic force microscope to assess the early phase of cell adhesion (maximal detachment and local rupture forces) and cell rigidity (Young's modulus) in alveolar epithelial cells (A549) for toxin exposure <1 h. At 30 min of exposure, CyaA toxin has a minimal effect on cell viability (>95%) at CyaA concentration of 0.5 nM, but a significant effect (≈81%) at 10 nM. MFS performed on A549 for three different concentrations (0.5, 5 and 10 nM) demonstrates that CyaA toxin significantly affects both cell adhesion (detachment forces are decreased) and cell mechanics (Young's modulus is increased). CyaA toxin (at 0.5 nM) assessed at three indentation/retraction speeds (2, 5 and 10 µm/s) significantly affects global detachment forces, local rupture events and Young modulus compared with control conditions, while an enzymatically inactive variant CyaAE5 has no effect. These results reveal the loading rate dependence of the multiple bonds newly formed between the cell and integrin-specific coated probe as well as the individual bond kinetics which are only slightly affected by the patho-physiological dose of CyaA toxin. Finally, theory of multiple bond force rupture enables us to deduce the bond number N which is reduced by a factor of 2 upon CyaA exposure (N ≈ 6 versus N ≈ 12 in control conditions). CONCLUSIONS: MFS measurements demonstrate that adhesion and mechanical properties of A549 are deeply affected by exposure to the CyaA toxin but not to an enzymatically inactive variant. This indicates that the alteration of cell mechanics triggered by CyaA is a consequence of the increase in intracellular cAMP in these target cells. SIGNIFICANCE: These results suggest that mechanical and adhesion properties of the cells appear as pertinent markers of cytotoxicity of CyaA toxin.


Asunto(s)
Toxina de Adenilato Ciclasa/metabolismo , Células Epiteliales Alveolares/fisiología , Bordetella pertussis/enzimología , Bordetella pertussis/patogenicidad , Adhesiones Focales/fisiología , Integrinas/metabolismo , Células A549 , Citoesqueleto de Actina/metabolismo , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/efectos de los fármacos , Bordetella pertussis/efectos de los fármacos , AMP Cíclico/metabolismo , Adhesiones Focales/efectos de los fármacos , Humanos , Tos Ferina/tratamiento farmacológico , Tos Ferina/microbiología
3.
Biol Cell ; 109(7): 255-272, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28543271

RESUMEN

BACKGROUND INFORMATION: Integrin-mediated adhesion is a key process by which cells physically connect with their environment, and express sensitivity and adaptation through mechanotransduction. A critical step of cell adhesion is the formation of the first bonds which individually generate weak contacts (∼tens pN) but can sustain thousand times higher forces (∼tens nN) when associated. RESULTS: We propose an experimental validation by multiple bond force spectroscopy (MFS) of a stochastic model predicting adhesion reinforcement permitted by non-cooperative, multiple bonds on which force is homogeneously distributed (called parallel bond configuration). To do so, spherical probes (diameter: 6.6 µm), specifically coated by RGD-peptide to bind integrins, are used to statically indent and homogenously stretch the multiple bonds created for short contact times (2 s) between the bead and the surface of epithelial cells (A549). Using different separation speeds (v = 2, 5, 10 µm/s) and measuring cellular Young's modulus as well as the local stiffness preceding local rupture events, we obtain cell-by-cell the effective loading rates both at the global cell level and at the local level of individual constitutive bonds. Local rupture forces are in the range: f*=60-115 pN , whereas global rupture (detachment) forces reach F*=0.8-1.7 nN . Global and local rupture forces both exhibit linear dependencies with the effective loading rate, the slopes of these two linear relationships providing an estimate of the number of independent integrin bonds constituting the tested multiple bond structure (∼12). CONCLUSIONS: The MFS method enables to validate the reinforcement of integrin-mediated adhesion induced by the multiple bond configuration in which force is homogeneously distributed amongst parallel bonds. Local rupture events observed in the course of a spectroscopy manoeuver (MFS) lead to rupture force values considered in the literature as single-integrin bonds. SIGNIFICANCE: Adhesion reinforcement permitted by the parallel multiple bond association is particularly challenging to verify for two reasons: first, it is difficult to control precisely the direction of forces experimentally, and second, because both global and local bond rupture forces depend on the effective loading rate applied to the bond. Here, we propose an integrin-specific MFS method capable of detecting bond number and characterising bond configuration and its impact on adhesion strength.


Asunto(s)
Células Epiteliales Alveolares/citología , Adhesión Celular , Integrinas/fisiología , Mecanotransducción Celular , Microscopía de Fuerza Atómica/métodos , Células A549 , Células Epiteliales Alveolares/fisiología , Humanos
4.
Biomech Model Mechanobiol ; 15(4): 947-63, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26459324

RESUMEN

Cellular adhesion forces depend on local biological conditions meaning that adhesion characterization must be performed while preserving cellular integrity. We presently postulate that magnetic bead twisting provides an appropriate stress, i.e., basically a clamp, for assessment in living cells of both cellular adhesion and mechanical properties of the cytoskeleton. A global dissociation rate obeying a Bell-type model was used to determine the natural dissociation rate ([Formula: see text]) and a reference stress ([Formula: see text]). These adhesion parameters were determined in parallel to the mechanical properties for a variety of biological conditions in which either adhesion or cytoskeleton was selectively weakened or strengthened by changing successively ligand concentration, actin polymerization level (by treating with cytochalasin D), level of exerted stress (by increasing magnetic torque), and cell environment (by using rigid and soft 3D matrices). On the whole, this multiscale evaluation of the cellular and molecular responses to a controlled stress reveals an evolution which is consistent with stochastic multiple bond theories and with literature results obtained with other molecular techniques. Present results confirm the validity of the proposed bead-twisting approach for its capability to probe cellular and molecular responses in a variety of biological conditions.


Asunto(s)
Citoesqueleto/metabolismo , Magnetismo/métodos , Microesferas , Modelos Biológicos , Células A549 , Adhesión Celular , Humanos , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA