Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
J Clin Invest ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352768

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare disease caused by the expression of progerin, an aberrant protein produced by a point mutation in the LMNA gene. HGPS patients show accelerated aging and die prematurely mainly from complications of atherosclerosis such as myocardial infarction, heart failure, or stroke. However, the mechanisms underlying HGPS vascular pathology remain ill defined. We used single-cell RNA sequencing to characterize the aorta in progerin-expressing LmnaG609G/G609G mice and wild-type controls, with a special focus on endothelial cells (ECs). HGPS ECs showed gene expression changes associated with extracellular matrix alterations, increased leukocyte extravasation, and activation of the yes-associated protein 1/transcriptional activator with PDZ-binding domain (YAP/TAZ) mechanosensing pathway, all validated by different techniques. Atomic force microscopy experiments demonstrated stiffer subendothelial extracellular matrix in progeroid aortas, and ultrasound assessment of live HGPS mice revealed disturbed aortic blood flow, both key inducers of the YAP/TAZ pathway in ECs. YAP/TAZ inhibition with verteporfin reduced leukocyte accumulation in the aortic intimal layer and decreased atherosclerosis burden in progeroid mice. Our findings identify endothelial YAP/TAZ signaling as a key mechanism of HGPS vascular disease and open a new avenue for the development of YAP/TAZ targeting drugs to ameliorate progerin-induced atherosclerosis.

2.
J Am Coll Cardiol ; 84(15): 1391-1403, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39357937

RESUMEN

BACKGROUND: Atherosclerosis is a dynamic process. There is little evidence regarding whether quantification of atherosclerosis extent and progression, particularly in the carotid artery, in asymptomatic individuals predicts all-cause mortality. OBJECTIVES: This study sought to evaluate the independent predictive value (beyond cardiovascular risk factors) of subclinical atherosclerosis burden and progression and all-cause mortality. METHODS: A population of 5,716 asymptomatic U.S. adults (mean age 68.9 years, 56.7% female) enrolled between 2008 and 2009 in the BioImage (A Clinical Study of Burden of Atherosclerotic Disease in an At Risk Population) study underwent examination by vascular ultrasound to quantify carotid plaque burden (cPB) (the sum of right and left carotid plaque areas) and by computed tomography for coronary artery calcium (CAC). Follow-up carotid vascular ultrasound was performed on 732 participants a median of 8.9 years after the baseline exam. All participants were followed up for all-cause mortality, the primary outcome. Trend HRs are the per-tertile increase in each variable. RESULTS: Over a median 12.4 years' follow-up, 901 (16%) participants died. After adjustment for cardiovascular risk factors and background medication, baseline cPB and CAC score were both significantly associated with all-cause mortality (fully adjusted trend HR: 1.23; 95% CI: 1.16-1.32; and HR: 1.15; 95% CI: 1.08-1.23), respectively (both P < 0.001), thus providing additional prognostic value. cPB performed better than CAC score. In participants with a second vascular ultrasound evaluation, median cPB progressed from 29.2 to 91.3 mm3. cPB progression was significantly associated with all-cause mortality after adjusting for cardiovascular risk factors and baseline cPB (HR: 1.03; 95% CI: 1.01-1.04 per absolute 10-mm3 change; P = 0.01). CONCLUSIONS: Subclinical atherosclerosis burden (cPB and CAC) in asymptomatic individuals was independently associated with all-cause mortality. Moreover, atherosclerosis progression was independently associated with all-cause mortality.


Asunto(s)
Aterosclerosis , Progresión de la Enfermedad , Humanos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Aterosclerosis/epidemiología , Aterosclerosis/mortalidad , Estudios de Seguimiento , Enfermedades Asintomáticas , Enfermedades de las Arterias Carótidas/mortalidad , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/epidemiología , Factores de Riesgo , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/mortalidad , Causas de Muerte/tendencias , Enfermedad de la Arteria Coronaria/mortalidad , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estados Unidos/epidemiología
3.
Circulation ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206565

RESUMEN

BACKGROUND: Atherosclerosis is the main medical problem in Hutchinson-Gilford progeria syndrome, a rare premature aging disorder caused by the mutant lamin-A protein progerin. Recently, we found that limiting progerin expression to vascular smooth muscle cells (VSMCs) is sufficient to hasten atherosclerosis and death in Apoe-deficient mice. However, the impact of progerin-driven VSMC defects on endothelial cells (ECs) remained unclear. METHODS: Apoe- or Ldlr-deficient C57BL/6J mice with ubiquitous, VSMC-, EC- or myeloid-specific progerin expression fed a normal or high-fat diet were used to study endothelial phenotype during Hutchinson-Gilford progeria syndrome-associated atherosclerosis. Endothelial permeability to low-density lipoproteins was assessed by intravenous injection of fluorescently labeled human low-density lipoprotein and confocal microscopy analysis of the aorta. Leukocyte recruitment to the aortic wall was evaluated by en face immunofluorescence. Endothelial-to-mesenchymal transition (EndMT) was assessed by quantitative polymerase chain reaction and RNA sequencing in the aortic intima and by immunofluorescence in aortic root sections. TGFß (transforming growth factor ß) signaling was analyzed by multiplex immunoassay in serum, by Western blot in the aorta, and by immunofluorescence in aortic root sections. The therapeutic benefit of TGFß1/SMAD3 pathway inhibition was evaluated in mice by intraperitoneal injection of SIS3 (specific inhibitor of SMAD3), and vascular phenotype was assessed by Oil Red O staining, histology, and immunofluorescence in the aorta and the aortic root. RESULTS: Both ubiquitous and VSMC-specific progerin expression in Apoe-null mice provoked alterations in aortic ECs, including increased permeability to low-density lipoprotein and leukocyte recruitment. Atherosclerotic lesions in these progeroid mouse models, but not in EC- and myeloid-specific progeria models, contained abundant cells combining endothelial and mesenchymal features, indicating extensive EndMT triggered by dysfunctional VSMCs. Accordingly, the intima of ubiquitous and VSMC-specific progeroid models at the onset of atherosclerosis presented increased expression of EndMT-linked genes, especially those specific to fibroblasts and extracellular matrix. Aorta in both models showed activation of the TGFß1/SMAD3 pathway, a major trigger of EndMT, and treatment of VSMC-specific progeroid mice with SIS3 alleviated the aortic phenotype. CONCLUSIONS: Progerin-induced VSMC alterations promote EC dysfunction and EndMT through TGFß1/SMAD3, identifying this process as a candidate target for Hutchinson-Gilford progeria syndrome treatment. These findings also provide insight into the complex role of EndMT during atherogenesis.

4.
Nat Med ; 30(10): 2857-2866, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39215150

RESUMEN

Clonal hematopoiesis, a condition in which acquired somatic mutations in hematopoietic stem cells lead to the outgrowth of a mutant hematopoietic clone, is associated with a higher risk of hematological cancer and a growing list of nonhematological disorders, most notably atherosclerosis and associated cardiovascular disease. However, whether accelerated atherosclerosis is a cause or a consequence of clonal hematopoiesis remains a matter of debate. Some studies support a direct contribution of certain clonal hematopoiesis-related mutations to atherosclerosis via exacerbation of inflammatory responses, whereas others suggest that clonal hematopoiesis is a symptom rather than a cause of atherosclerosis, as atherosclerosis or related traits may accelerate the expansion of mutant hematopoietic clones. Here we combine high-sensitivity DNA sequencing in blood and noninvasive vascular imaging to investigate the interplay between clonal hematopoiesis and atherosclerosis in a longitudinal cohort of healthy middle-aged individuals. We found that the presence of a clonal hematopoiesis-related mutation confers an increased risk of developing de novo femoral atherosclerosis over a 6-year period, whereas neither the presence nor the extent of atherosclerosis affects mutant cell expansion during this timeframe. These findings indicate that clonal hematopoiesis unidirectionally promotes atherosclerosis, which should help translate the growing understanding of this condition into strategies for the prevention of atherosclerotic cardiovascular disease in individuals exhibiting clonal hematopoiesis.


Asunto(s)
Aterosclerosis , Hematopoyesis Clonal , Mutación , Humanos , Aterosclerosis/genética , Aterosclerosis/patología , Hematopoyesis Clonal/genética , Persona de Mediana Edad , Masculino , Femenino , Células Madre Hematopoyéticas/patología , Adulto , Estudios Longitudinales
5.
Basic Res Cardiol ; 119(5): 773-794, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134663

RESUMEN

ß3-Adrenergic receptor (ß3AR) agonists have been shown to protect against ischemia-reperfusion injury (IRI). Since ß3ARs are present both in cardiomyocytes and in endothelial cells, the cellular compartment responsible for this protection has remained unknown. Using transgenic mice constitutively expressing the human ß3AR (hß3AR) in cardiomyocytes or in the endothelium on a genetic background of null endogenous ß3AR expression, we show that only cardiomyocyte expression protects against IRI (45 min ischemia followed by reperfusion over 24 h). Infarct size was also limited after ischemia-reperfusion in mice with cardiomyocyte hß3AR overexpression on top of endogenous ß3AR expression. hß3AR overexpression in these mice reduced IRI-induced cardiac fibrosis and improved long-term left ventricular systolic function. Cardiomyocyte-specific ß3AR overexpression resulted in a baseline remodeling of the mitochondrial network, characterized by upregulated mitochondrial biogenesis and a downregulation of mitochondrial quality control (mitophagy), resulting in elevated numbers of small mitochondria with a depressed capacity for the generation of reactive oxygen species but improved capacity for ATP generation. These processes precondition cardiomyocyte mitochondria to be more resistant to IRI. Upon reperfusion, hearts with hß3AR overexpression display a restoration in the mitochondrial quality control and a rapid activation of antioxidant responses. Strong protection against IRI was also observed in mice infected with an adeno-associated virus (AAV) encoding hß3AR under a cardiomyocyte-specific promoter. These results confirm the translational potential of increased cardiomyocyte ß3AR expression, achieved either naturally through exercise or artificially through gene therapy approaches, to precondition the cardiomyocyte mitochondrial network to withstand future insults.


Asunto(s)
Ratones Transgénicos , Mitocondrias Cardíacas , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Receptores Adrenérgicos beta 3 , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Receptores Adrenérgicos beta 3/metabolismo , Receptores Adrenérgicos beta 3/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/genética , Ratones , Humanos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Especies Reactivas de Oxígeno/metabolismo , Masculino , Modelos Animales de Enfermedad
6.
Proc Natl Acad Sci U S A ; 121(18): e2400752121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648484

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare disease caused by the expression of progerin, a mutant protein that accelerates aging and precipitates death. Given that atherosclerosis complications are the main cause of death in progeria, here, we investigated whether progerin-induced atherosclerosis is prevented in HGPSrev-Cdh5-CreERT2 and HGPSrev-SM22α-Cre mice with progerin suppression in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), respectively. HGPSrev-Cdh5-CreERT2 mice were undistinguishable from HGPSrev mice with ubiquitous progerin expression, in contrast with the ameliorated progeroid phenotype of HGPSrev-SM22α-Cre mice. To study atherosclerosis, we generated atheroprone mouse models by overexpressing a PCSK9 gain-of-function mutant. While HGPSrev-Cdh5-CreERT2 and HGPSrev mice developed a similar level of excessive atherosclerosis, plaque development in HGPSrev-SM22α-Cre mice was reduced to wild-type levels. Our studies demonstrate that progerin suppression in VSMCs, but not in ECs, prevents exacerbated atherosclerosis in progeroid mice.


Asunto(s)
Aterosclerosis , Células Endoteliales , Lamina Tipo A , Músculo Liso Vascular , Progeria , Animales , Ratones , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Progeria/metabolismo , Progeria/genética , Progeria/patología , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética
7.
J Cell Mol Med ; 28(8): e18153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568071

RESUMEN

The small GTPase RhoA and the downstream Rho kinase (ROCK) regulate several cell functions and pathological processes in the vascular system that contribute to the age-dependent risk of cardiovascular disease, including endothelial dysfunction, excessive permeability, inflammation, impaired angiogenesis, abnormal vasoconstriction, decreased nitric oxide production and apoptosis. Frailty is a loss of physiological reserve and adaptive capacity with advanced age and is accompanied by a pro-inflammatory and pro-oxidative state that promotes vascular dysfunction and thrombosis. This review summarises the role of the RhoA/Rho kinase signalling pathway in endothelial dysfunction, the acquisition of the pro-thrombotic state and vascular ageing. We also discuss the possible role of RhoA/Rho kinase signalling as a promising therapeutic target for the prevention and treatment of age-related cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Trombosis , Enfermedades Vasculares , Humanos , Quinasas Asociadas a rho/genética , Células Endoteliales
8.
Geroscience ; 46(1): 867-884, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37233881

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disease caused by expression of progerin, a lamin A variant that is also expressed at low levels in non-HGPS individuals. Although HGPS patients die predominantly from myocardial infarction and stroke, the mechanisms that provoke pathological alterations in the coronary and cerebral arteries in HGPS remain ill defined. Here, we assessed vascular function in the coronary arteries (CorAs) and carotid arteries (CarAs) of progerin-expressing LmnaG609G/G609G mice (G609G), both in resting conditions and after hypoxic stimulus. Wire myography, pharmacological screening, and gene expression studies demonstrated vascular atony and stenosis, as well as other functional alterations in progeroid CorAs and CarAs and aorta. These defects were associated with loss of vascular smooth muscle cells and overexpression of the KV7 family of voltage-dependent potassium channels. Compared with wild-type controls, G609G mice showed reduced median survival upon chronic isoproterenol exposure, a baseline state of chronic cardiac hypoxia characterized by overexpression of hypoxia-inducible factor 1α and 3α genes, and increased cardiac vascularization. Our results shed light on the mechanisms underlying progerin-induced coronary and carotid artery disease and identify KV7 channels as a candidate target for the treatment of HGPS.


Asunto(s)
Progeria , Humanos , Ratones , Animales , Progeria/genética , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Hipoxia
9.
Nat Commun ; 14(1): 8316, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097578

RESUMEN

Accumulation of lipid-laden macrophages within the arterial neointima is a critical step in atherosclerotic plaque formation. Here, we show that reduced levels of the cellular plasticity factor ZEB1 in macrophages increase atherosclerotic plaque formation and the chance of cardiovascular events. Compared to control counterparts (Zeb1WT/ApoeKO), male mice with Zeb1 ablation in their myeloid cells (Zeb1∆M/ApoeKO) have larger atherosclerotic plaques and higher lipid accumulation in their macrophages due to delayed lipid traffic and deficient cholesterol efflux. Zeb1∆M/ApoeKO mice display more pronounced systemic metabolic alterations than Zeb1WT/ApoeKO mice, with higher serum levels of low-density lipoproteins and inflammatory cytokines and larger ectopic fat deposits. Higher lipid accumulation in Zeb1∆M macrophages is reverted by the exogenous expression of Zeb1 through macrophage-targeted nanoparticles. In vivo administration of these nanoparticles reduces atherosclerotic plaque formation in Zeb1∆M/ApoeKO mice. Finally, low ZEB1 expression in human endarterectomies is associated with plaque rupture and cardiovascular events. These results set ZEB1 in macrophages as a potential target in the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Humanos , Masculino , Ratones , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Regulación hacia Abajo , Lipoproteínas LDL/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
10.
J Am Coll Cardiol ; 82(22): 2069-2083, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37993199

RESUMEN

BACKGROUND: Atherosclerosis is a systemic disease that frequently begins early in life. However, knowledge about the temporal disease dynamics (ie, progression or regression) of human subclinical atherosclerosis and their determinants is scarce. OBJECTIVES: This study sought to investigate early subclinical atherosclerosis disease dynamics within a cohort of middle-aged, asymptomatic individuals by using multiterritorial 3-dimensional vascular ultrasound (3DVUS) imaging. METHODS: A total of 3,471 participants from the PESA (Progression of Early Subclinical Atherosclerosis) cohort study (baseline age 40-55 years; 36% female) underwent 3 serial 3DVUS imaging assessments of peripheral arteries at 3-year intervals. Subclinical atherosclerosis was quantified as global plaque volume (mm3) (bilateral carotid and femoral plaque burden). Multivariable logistic regression models for progression and regression were developed using stepwise forward variable selection. RESULTS: Baseline to 6-year subclinical atherosclerosis progression occurred in 32.7% of the cohort (17.5% presenting with incident disease and 15.2% progressing from prevalent disease at enrollment). Regression was observed in 8.0% of those patients with baseline disease. The effects of higher low-density lipoprotein cholesterol (LDL-C) and elevated systolic blood pressure (SBP) on 6-year subclinical atherosclerosis progression risk were more pronounced among participants in the youngest age stratum (Pinteraction = 0.04 and 0.02, respectively). CONCLUSIONS: Over 6 years, subclinical atherosclerosis progressed in one-third of middle-age asymptomatic subjects. Atherosclerosis regression is possible in early stages of the disease. The impact of LDL-C and SBP on subclinical atherosclerosis progression was more pronounced in younger participants, a finding suggesting that the prevention of atherosclerosis and its progression could be enhanced by tighter risk factor control at younger ages, with a likely long-term impact on reducing the risk of clinical events. (Progression of Early Subclinical Atherosclerosis [PESA; also PESA-CNIC-Santander]; NCT01410318).


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Persona de Mediana Edad , Humanos , Femenino , Adulto , Masculino , Estudios de Cohortes , LDL-Colesterol , Progresión de la Enfermedad , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/epidemiología , Arterias Carótidas , Factores de Riesgo
11.
J Clin Med ; 12(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37685580

RESUMEN

Vascular aging, i.e., the deterioration of the structure and function of the arteries over the life course, predicts cardiovascular events and mortality. Vascular degeneration can be recognized before becoming clinically symptomatic; therefore, its assessment allows the early identification of individuals at risk. This opens the possibility of minimizing disease progression. To review these issues, a search was completed using PubMed, MEDLINE, and Google Scholar from 2000 to date. As a network of clinicians and scientists involved in vascular medicine, we here describe the structural and functional age-dependent alterations of the arteries, the clinical tools for an early diagnosis of vascular aging, and the cellular and molecular events implicated. It emerges that more studies are necessary to identify the best strategy to quantify vascular aging, and to design proper physical activity programs, nutritional and pharmacological strategies, as well as social interventions to prevent, delay, and eventually revert the disease.

12.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446344

RESUMEN

Mutations in the LMNA gene (encoding lamin A/C proteins) cause several human cardiac diseases, including dilated cardiomyopathies (LMNA-DCM). The main clinical risks in LMNA-DCM patients are sudden cardiac death and progressive left ventricular ejection fraction deterioration, and therefore most human and animal studies have sought to define the mechanisms through which LMNA mutations provoke cardiac alterations, with a particular focus on cardiomyocytes. To investigate if LMNA mutations also cause vascular alterations that might contribute to the etiopathogenesis of LMNA-DCM, we generated and characterized Lmnaflox/floxSM22αCre mice, which constitutively lack lamin A/C in vascular smooth muscle cells (VSMCs), cardiac fibroblasts, and cardiomyocytes. Like mice with whole body or cardiomyocyte-specific lamin A/C ablation, Lmnaflox/floxSM22αCre mice recapitulated the main hallmarks of human LMNA-DCM, including ventricular systolic dysfunction, cardiac conduction defects, cardiac fibrosis, and premature death. These alterations were associated with elevated expression of total and phosphorylated (active) Smad3 and cleaved (active) caspase 3 in the heart. Lmnaflox/floxSM22αCre mice also exhibited perivascular fibrosis in the coronary arteries and a switch of aortic VSMCs from the 'contractile' to the 'synthetic' phenotype. Ex vivo wire myography in isolated aortic rings revealed impaired maximum contraction capacity and an altered response to vasoconstrictor and vasodilator agents in Lmnaflox/floxSM22αCre mice. To our knowledge, our results provide the first evidence of phenotypic alterations in VSMCs that might contribute significantly to the pathophysiology of some forms of LMNA-DCM. Future work addressing the mechanisms underlying vascular defects in LMNA-DCM may open new therapeutic avenues for these diseases.


Asunto(s)
Cardiomiopatía Dilatada , Miocitos Cardíacos , Humanos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Músculo Liso Vascular/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Volumen Sistólico , Función Ventricular Izquierda , Cardiomiopatía Dilatada/patología , Mutación
13.
Eur Heart J ; 44(29): 2698-2709, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37339167

RESUMEN

AIMS: Epigenetic age is emerging as a personalized and accurate predictor of biological age. The aim of this article is to assess the association of subclinical atherosclerosis with accelerated epigenetic age and to investigate the underlying mechanisms mediating this association. METHODS AND RESULTS: Whole blood methylomics, transcriptomics, and plasma proteomics were obtained for 391 participants of the Progression of Early Subclinical Atherosclerosis study. Epigenetic age was calculated from methylomics data for each participant. Its divergence from chronological age is termed epigenetic age acceleration. Subclinical atherosclerosis burden was estimated by multi-territory 2D/3D vascular ultrasound and by coronary artery calcification. In healthy individuals, the presence, extension, and progression of subclinical atherosclerosis were associated with a significant acceleration of the Grim epigenetic age, a predictor of health and lifespan, regardless of traditional cardiovascular risk factors. Individuals with an accelerated Grim epigenetic age were characterized by an increased systemic inflammation and associated with a score of low-grade, chronic inflammation. Mediation analysis using transcriptomics and proteomics data revealed key pro-inflammatory pathways (IL6, Inflammasome, and IL10) and genes (IL1B, OSM, TLR5, and CD14) mediating the association between subclinical atherosclerosis and epigenetic age acceleration. CONCLUSION: The presence, extension, and progression of subclinical atherosclerosis in middle-aged asymptomatic individuals are associated with an acceleration in the Grim epigenetic age. Mediation analysis using transcriptomics and proteomics data suggests a key role of systemic inflammation in this association, reinforcing the relevance of interventions on inflammation to prevent cardiovascular disease.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Persona de Mediana Edad , Humanos , Multiómica , Aterosclerosis/genética , Inflamación/genética , Epigénesis Genética , Factores de Riesgo
14.
Front Cell Dev Biol ; 11: 1128594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025175

RESUMEN

Population aging and age-related cardiovascular disease (CVD) are becoming increasingly prevalent worldwide, generating a huge medical and socioeconomic burden. The complex regulation of aging and CVD and the interaction between these processes are crucially dependent on cellular stress responses. Interferon-stimulated gene-15 (ISG15) encodes a ubiquitin-like protein expressed in many vertebrate cell types that can be found both free and conjugated to lysine residues of target proteins via a post-translational process termed ISGylation. Deconjugation of ISG15 (deISGylation) is catalyzed by the ubiquitin-specific peptidase 18 (USP18). The ISG15 pathway has mostly been studied in the context of viral and bacterial infections and in cancer. This minireview summarizes current knowledge on the role of ISG15 in age-related telomere shortening, genomic instability, and DNA damage accumulation, as well as in hypertension, diabetes, and obesity, major CVD risk factors prevalent in the elderly population.

15.
Methods Mol Biol ; 2608: 451-467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653722

RESUMEN

Monocytes play essential roles in the inflammatory and anti-inflammatory processes that take place during an immune response, acting both within the vascular network and interstitially. Monocytes are activated, mobilized, and recruited in response to an inflammatory stimulus or different forms of tissue injury. The recruitment of circulating monocytes to the inflamed tissue is essential to resolving the injury.Monocyte recruitment is a multistep process that begins with a decrease in rolling velocity, is followed by adhesion to the endothelium and crawling over the luminal vessel surface, and culminates in monocyte transmigration into the surrounding tissue. Intravital microscopy is a powerful visualization tool for the study of leukocyte behavior and function, intercellular interactions, cell trafficking, and recruitment in pathological and physiological conditions. This modality is therefore widely used for the detailed analysis of the immune response to multiple insults and the molecular mechanisms underlying monocyte interactions within the vascular system in vivo. This chapter describes a protocol for the use of intravital microscopy to analyze monocyte recruitment from the blood vessel to the inflammatory site.


Asunto(s)
Leucocitos , Monocitos , Humanos , Adhesión Celular/fisiología , Microscopía Intravital , Inflamación , Endotelio Vascular/fisiología
16.
Geroscience ; 45(2): 1231-1236, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35752705

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP), defined as the presence of somatic mutations in cancer-related genes in blood cells in the absence of hematological cancer, has recently emerged as an important risk factor for several age-related conditions, especially cardiovascular disease. CHIP is strongly associated with normal aging, but its role in premature aging syndromes is unknown. Hutchinson-Gilford progeria syndrome (HGPS) is an ultra-rare genetic condition driven by the accumulation of a truncated form of the lamin A protein called progerin. HGPS patients exhibit several features of accelerated aging and typically die from cardiovascular complications in their early teens. Previous studies have shown normal hematological parameters in HGPS patients, except for elevated platelets, and low levels of lamin A expression in hematopoietic cells relative to other cell types in solid tissues, but the prevalence of CHIP in HGPS remains unexplored. To investigate the potential role of CHIP in HGPS, we performed high-sensitivity targeted sequencing of CHIP-related genes in blood DNA samples from a cohort of 47 HGPS patients. As a control, the same sequencing strategy was applied to blood DNA samples from middle-aged and elderly individuals, expected to exhibit a biological age and cardiovascular risk profile similar to HGPS patients. We found that CHIP is not prevalent in HGPS patients, in marked contrast to our observations in individuals who age normally. Thus, our study unveils a major difference between HGPS and normal aging and provides conclusive evidence that CHIP is not frequent in HGPS and, therefore, is unlikely to contribute to the pathophysiology of this accelerated aging syndrome.


Asunto(s)
Enfermedades Cardiovasculares , Progeria , Humanos , Persona de Mediana Edad , Anciano , Adolescente , Progeria/genética , Hematopoyesis Clonal , Lamina Tipo A/genética , Envejecimiento/genética , Envejecimiento/metabolismo
17.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36233036

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal disorder characterized by premature aging and death at a median age of 14.5 years. The most common cause of HGPS (affecting circa 90% of patients) is a de novo heterozygous synonymous single-base substitution (c.1824C>T; p.G608G) in the LMNA gene that results in the accumulation of progerin, an aberrant form of lamin A that, unlike mature lamin A, remains permanently farnesylated. The ratio of progerin to mature lamin A correlates with disease severity in HGPS patients, and can be used to assess the effectiveness of therapies aimed at lessening aberrant splicing or progerin farnesylation. We recently showed that the endogenous content of lamin A and progerin can be measured by mass spectrometry (MS), providing an alternative to immunological methods, which lack the necessary specificity and quantitative accuracy. Here, we present the first non-immunological method that reliably quantifies the levels of wild-type lamin A and farnesylated progerin in cells from HGPS patients. This method, which is based on a targeted MS approach and the use of isotope-labeled internal standards, could be applied in ongoing clinical trials evaluating the efficacy of drugs that inhibit progerin farnesylation.


Asunto(s)
Progeria , Adolescente , Línea Celular , Núcleo Celular , Humanos , Lamina Tipo A/genética , Espectrometría de Masas , Progeria/genética
19.
N Engl J Med ; 387(11): 967-977, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36018037

RESUMEN

BACKGROUND: A polypill that includes key medications associated with improved outcomes (aspirin, angiotensin-converting-enzyme [ACE] inhibitor, and statin) has been proposed as a simple approach to the secondary prevention of cardiovascular death and complications after myocardial infarction. METHODS: In this phase 3, randomized, controlled clinical trial, we assigned patients with myocardial infarction within the previous 6 months to a polypill-based strategy or usual care. The polypill treatment consisted of aspirin (100 mg), ramipril (2.5, 5, or 10 mg), and atorvastatin (20 or 40 mg). The primary composite outcome was cardiovascular death, nonfatal type 1 myocardial infarction, nonfatal ischemic stroke, or urgent revascularization. The key secondary end point was a composite of cardiovascular death, nonfatal type 1 myocardial infarction, or nonfatal ischemic stroke. RESULTS: A total of 2499 patients underwent randomization and were followed for a median of 36 months. A primary-outcome event occurred in 118 of 1237 patients (9.5%) in the polypill group and in 156 of 1229 (12.7%) in the usual-care group (hazard ratio, 0.76; 95% confidence interval [CI], 0.60 to 0.96; P = 0.02). A key secondary-outcome event occurred in 101 patients (8.2%) in the polypill group and in 144 (11.7%) in the usual-care group (hazard ratio, 0.70; 95% CI, 0.54 to 0.90; P = 0.005). The results were consistent across prespecified subgroups. Medication adherence as reported by the patients was higher in the polypill group than in the usual-care group. Adverse events were similar between groups. CONCLUSIONS: Treatment with a polypill containing aspirin, ramipril, and atorvastatin within 6 months after myocardial infarction resulted in a significantly lower risk of major adverse cardiovascular events than usual care. (Funded by the European Union Horizon 2020; SECURE ClinicalTrials.gov number, NCT02596126; EudraCT number, 2015-002868-17.).


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Inhibidores de Agregación Plaquetaria , Inhibidores de la Enzima Convertidora de Angiotensina/efectos adversos , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Aspirina/efectos adversos , Aspirina/uso terapéutico , Atorvastatina/efectos adversos , Atorvastatina/uso terapéutico , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/prevención & control , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Accidente Cerebrovascular Isquémico/prevención & control , Infarto del Miocardio/complicaciones , Infarto del Miocardio/prevención & control , Infarto del Miocardio/terapia , Inhibidores de Agregación Plaquetaria/efectos adversos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Ramipril/efectos adversos , Ramipril/uso terapéutico , Prevención Secundaria/métodos
20.
Basic Clin Pharmacol Toxicol ; 131(4): 217-223, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35790078

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by premature ageing and early death at a mean age of 14.7 years. At the molecular level, HGPS is caused by a de novo heterozygous mutation in LMNA, the gene encoding A-type lamins (mainly lamin A and C) and nuclear proteins, which have important cellular functions related to structure of the nuclear envelope. The LMNA mutation leads to the synthesis of a truncated prelamin A protein (called progerin), which cannot undergo normal processing to mature lamin A. In normal cells, prelamin A processing involves four posttranslational processing steps catalysed by four different enzymes. In HGPS cells, progerin accumulates as a farnesylated and methylated intermediate in the nuclear envelope where it is toxic and causes nuclear shape abnormalities and senescence. Numerous efforts have been made to target and reduce the toxicity of progerin, eliminate its synthesis and enhance its degradation, but as of today, only the use of farnesyltransferase inhibitors is approved for clinical use in HGPS patients. Here, we review the main current strategies that are being evaluated for treating HGPS, and we focus on efforts to target the posttranslational processing of progerin.


Asunto(s)
Progeria , Adolescente , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Farnesiltransferasa/uso terapéutico , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas Nucleares/genética , Progeria/tratamiento farmacológico , Progeria/genética , Progeria/metabolismo , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...