Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(1): e0108623, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38099681

RESUMEN

We report the genome sequences of 31 mycobacteriophages isolated on Mycobacterium smegmatis mc2155 at room temperature. The genomes add to the diversity of Clusters A, B, C, G, and K. Collectively, the genomes include 70 novel protein-coding genes that have no close relatives among the actinobacteriophages.

2.
J Vector Ecol ; 45(2): 321-332, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33207056

RESUMEN

Due to climate change-induced alterations of temperature and humidity, the distribution of pathogen-carrying organisms such as ticks may shift. Tick survival is often limited by environmental factors such as dryness, but a predicted hotter and wetter world may allow the expansion of tick ranges. Dermacentor andersoni and D. variabilis ticks are morphologically similar, co-occur throughout the Inland Northwest of Washington State, U.S.A., and both can be injected with pathogenic Rickettsia and Francisella bacteria. Differences in behavior and the potential role of endosymbiotic Rickettsia and Francisella in these ticks are poorly studied. We wanted to measure behavioral and ecological differences between the two species and determine which, if any, Rickettsia and Francisella bacteria - pathogenic or endosymbiotic - they carried. Additionally, we wanted to determine if either tick species may be selected for if the climate in eastern Washington becomes wetter or dryer. We found that D. andersoni is more resistant to desiccation, but both species share similar questing behaviors such as climbing and attraction to bright light. Both also avoid the odor of eucalyptus and DEET but not permethrin. Although both tick species are capable of transmitting pathogenic species of Francisella and Rickettsia, which cause tularemia and Rocky Mountain Spotted Fever, respectively, we found primarily non-pathogenic endosymbiotic strains of Francisella and Rickettsia, and only one tick infected with F. tularensis subspecies holarctica.


Asunto(s)
Vectores Arácnidos/fisiología , Conducta Animal , Dermacentor/fisiología , Francisella/aislamiento & purificación , Rickettsia/aislamiento & purificación , Animales , Vectores Arácnidos/microbiología , Dermacentor/microbiología , Femenino , Masculino , Fiebre Maculosa de las Montañas Rocosas/transmisión , Simbiosis , Tularemia/transmisión , Washingtón
3.
Viruses ; 12(9)2020 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-32933138

RESUMEN

Repurposing FDA-approved compounds could provide the fastest route to alleviate the burden of disease caused by flaviviruses. In this study, three fluoroquinolones, enoxacin, difloxacin and ciprofloxacin, curtailed replication of flaviviruses Zika (ZIKV), dengue (DENV), Langat (LGTV) and Modoc (MODV) in HEK-293 cells at low micromolar concentrations. Time-of-addition assays suggested that enoxacin suppressed ZIKV replication at an intermediate step in the virus life cycle, whereas ciprofloxacin and difloxacin had a wider window of efficacy. A129 mice infected with 1 × 105 plaque-forming units (pfu) ZIKV FSS13025 (n = 20) or phosphate buffered saline (PBS) (n = 11) on day 0 and treated with enoxacin at 10 mg/kg or 15 mg/kg or diluent orally twice daily on days 1-5 did not differ in weight change or virus titer in serum or brain. However, mice treated with enoxacin showed a significant, five-fold decrease in ZIKV titer in testes relative to controls. Mice infected with 1 × 102 pfu ZIKV (n = 13) or PBS (n = 13) on day 0 and treated with 15 mg/kg oral enoxacin or diluent twice daily pre-treatment and days 1-5 post-treatment also did not differ in weight and viral load in the serum, brain, and liver, but mice treated with enoxacin showed a significant, 2.5-fold decrease in ZIKV titer in testes relative to controls. ZIKV can be sexually transmitted, so reduction of titer in the testes by enoxacin should be further investigated.


Asunto(s)
Antivirales/farmacología , Flavivirus/efectos de los fármacos , Fluoroquinolonas/farmacología , Replicación Viral/efectos de los fármacos , Animales , Ciprofloxacina/análogos & derivados , Ciprofloxacina/farmacología , Dengue , Virus del Dengue/efectos de los fármacos , Enoxacino/farmacología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Testículo/virología , Carga Viral , Virus Zika/efectos de los fármacos
4.
PLoS Negl Trop Dis ; 13(7): e0007473, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31306420

RESUMEN

The N-linked glycosylation motif at amino acid position 154-156 of the envelope (E) protein of West Nile virus (WNV) is linked to enhanced murine neuroinvasiveness, avian pathogenicity and vector competence. Naturally occurring isolates with altered E protein glycosylation patterns have been observed in WNV isolates; however, the specific effects of these polymorphisms on avian host pathogenesis and vector competence have not been investigated before. In the present study, amino acid polymorphisms, NYT, NYP, NYF, SYP, SYS, KYS and deletion (A'DEL), were reverse engineered into a parental WNV (NYS) cDNA infectious clone to generate WNV glycosylation mutant viruses. These WNV glycosylation mutant viruses were characterized for in vitro growth, pH-sensitivity, temperature-sensitivity and host competence in American crows (AMCR), house sparrows (HOSP) and Culex quinquefasciatus. The NYS and NYT glycosylated viruses showed higher viral replication, and lower pH and temperature sensitivity than NYP, NYF, SYP, SYS, KYS and A'DEL viruses in vitro. Interestingly, in vivo results demonstrated asymmetric effects in avian and mosquito competence that were independent of the E-protein glycosylation status. In AMCRs and HOSPs, all viruses showed comparable viremias with the exception of NYP and KYS viruses that showed attenuated phenotypes. Only NYP showed reduced vector competence in both Cx. quinquefasciatus and Cx. tarsalis. Glycosylated NYT exhibited similar avian virulence properties as NYS, but resulted in higher mosquito oral infectivity than glycosylated NYS and nonglycosylated, NYP, NYF, SYP and KYS mutants. These data demonstrated that amino acid polymorphisms at E154/156 dictate differential avian host and vector competence phenotypes independent of E-protein glycosylation status.


Asunto(s)
Vectores de Enfermedades , Proteínas del Envoltorio Viral/metabolismo , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/metabolismo , Aedes , Secuencias de Aminoácidos , Animales , Chlorocebus aethiops , Culex/virología , Culicidae/virología , Modelos Animales de Enfermedad , Femenino , Glicosilación , Concentración de Iones de Hidrógeno , Ratones , Mutación , Fenotipo , Gorriones/virología , Células Vero , Proteínas del Envoltorio Viral/genética , Viremia , Virulencia , Replicación Viral , Virus del Nilo Occidental/genética
5.
Emerg Infect Dis ; 22(8): 1353-62, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27433830

RESUMEN

Worldwide, West Nile virus (WNV) causes encephalitis in humans, horses, and birds. The Kunjin strain of WNV (WNVKUN) is endemic to northern Australia, but infections are usually asymptomatic. In 2011, an unprecedented outbreak of equine encephalitis occurred in southeastern Australia; most of the ≈900 reported cases were attributed to a newly emerged WNVKUN strain. To investigate the origins of this virus, we performed genetic analysis and in vitro and in vivo studies of 13 WNVKUN isolates collected from different regions of Australia during 1960-2012. Although no disease was recorded for 1984, 2000, or 2012, isolates collected during those years (from Victoria, Queensland, and New South Wales, respectively) exhibited levels of virulence in mice similar to that of the 2011 outbreak strain. Thus, virulent strains of WNVKUN have circulated in Australia for >30 years, and the first extensive outbreak of equine disease in Australia probably resulted from a combination of specific ecologic and epidemiologic conditions.


Asunto(s)
Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/patogenicidad , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Especificidad de Anticuerpos , Antígenos Virales/genética , Australia/epidemiología , Línea Celular , Evolución Molecular , Genoma Viral , Humanos , Ratones , Virulencia , Fiebre del Nilo Occidental/epidemiología
6.
Virology ; 476: 54-60, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25528416

RESUMEN

RNA interference (RNAi) is the major defense of many arthropods against arthropod-borne RNA viruses (arboviruses), but the role of RNAi in vertebrate immunity to arboviruses is not clear. RNA viruses can trigger RNAi in vertebrate cells, but the vertebrate interferon response may obscure this interaction. We quantified virus-derived small RNAs (vRNAs) generated by mosquito (U4.4) cells and interferon-deficient (Vero) and interferon-competent (HuH-7) mammalian cells infected with a single isolate of mosquito-borne dengue virus. Mosquito cells produced significantly more vRNAs than mammalian cells, and mosquito cell vRNAs were derived from both the positive- and negative-sense dengue genomes whereas mammalian cell vRNAs were derived primarily from positive-sense genome. Mosquito cell vRNAs were predominantly 21 nucleotides in length whereas mammalian cell vRNAs were between 12 and 36 nucleotides with a modest peak at 24 nucleotides. Hot-spots, regions of the virus genome that generated a disproportionate number of vRNAs, overlapped among the cell lines.


Asunto(s)
Aedes/virología , Virus del Dengue/genética , Dengue/virología , ARN Interferente Pequeño/genética , ARN Viral/genética , Animales , Secuencia de Bases , Línea Celular , Virus del Dengue/metabolismo , Humanos , Datos de Secuencia Molecular , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , ARN Viral/metabolismo
7.
PLoS One ; 9(6): e100802, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24971589

RESUMEN

A single helicase amino acid substitution, NS3-T249P, has been shown to increase viremia magnitude/mortality in American crows (AMCRs) following West Nile virus (WNV) infection. Lineage/intra-lineage geographic variants exhibit consistent amino acid polymorphisms at this locus; however, the majority of WNV isolates associated with recent outbreaks reported worldwide have a proline at the NS3-249 residue. In order to evaluate the impact of NS3-249 variants on avian and mammalian virulence, multiple amino acid substitutions were engineered into a WNV infectious cDNA (NY99; NS3-249P) and the resulting viruses inoculated into AMCRs, house sparrows (HOSPs) and mice. Differential viremia profiles were observed between mutant viruses in the two bird species; however, the NS3-249P virus produced the highest mean peak viral loads in both avian models. In contrast, this avian modulating virulence determinant had no effect on LD50 or the neurovirulence phenotype in the murine model. Recombinant helicase proteins demonstrated variable helicase and ATPase activities; however, differences did not correlate with avian or murine viremia phenotypes. These in vitro and in vivo data indicate that avian-specific phenotypes are modulated by critical viral-host protein interactions involving the NS3-249 residue that directly influence transmission efficiency and therefore the magnitude of WNV epizootics in nature.


Asunto(s)
Sustitución de Aminoácidos , Especificidad del Huésped , Proteínas no Estructurales Virales/genética , Virus del Nilo Occidental/genética , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Cuervos/virología , Ratones , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Gorriones/virología , Células Vero , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Virulencia/genética , Virus del Nilo Occidental/patogenicidad
8.
J Virol Methods ; 195: 76-85, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24121135

RESUMEN

To enable in vivo and in vitro competitive fitness comparisons among West Nile viruses (WNV), three reference viruses were marked genetically by site-directed mutagenesis with five synonymous nucleotide substitutions in the envelope gene region of the genome. Phenotypic neutrality of the mutants was assessed experimentally by competitive replication in cell culture and genetic stability of the substituted nucleotides was confirmed by direct sequencing. Luminex(®) technology, quantitative sequencing and quantitative RT-PCR (qRT-PCR) were compared in regard to specificity, sensitivity and accuracy for quantitation of wildtype and genetically marked viruses in mixed samples based on RNA obtained from samples of known viral titers. Although Luminex(®) technology and quantitative sequencing provided semi-quantitative or qualitative measurements, a sequence-specific primer extension approach using a specific reverse primer set in singleplex qRT-PCR demonstrated the best quantitation and specificity in the detection of RNA from wildtype and mutant viruses.


Asunto(s)
Alelos , Marcadores Genéticos , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Virología/métodos , Virus del Nilo Occidental/genética , Animales , Sensibilidad y Especificidad , Análisis de Secuencia/métodos
9.
J Gen Virol ; 92(Pt 11): 2523-2533, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21775581

RESUMEN

The presence of West Nile virus (WNV) was first documented in California, USA, during the summer of 2003, and subsequently the virus has become endemic throughout the state. Sequence analysis has demonstrated that the circulating strains are representative of the North American (WN02) genotype that has displaced the East Coast genotype (NY99). A recent study has indicated that enhanced vector competence at elevated temperatures may have played a role in the displacement of the East Coast genotype by WN02. In the current study, four WN02 strains from California, including an initial 2003 isolate (COAV997), were compared to strain NY99 in growth curve assays in mosquito and duck embryonic fibroblast (DEF) cell lines at differing, biologically relevant temperatures to assess the relative temperature sensitivities of these natural isolates. COAV997 was significantly debilitated in viral replication in DEF cells at 44 °C. Full-length sequence comparison of COAV997 against the NY99 reference strain revealed non-synonymous mutations in the envelope glycoprotein (V159A), non-structural protein 1 (NS1) (K110N) and non-structural protein 4A (NS4A) (F92L), as well as two mutations in the 3' UTR: C→T at nt 10 772 and A→G at nt 10 851. These non-synonymous mutations were introduced into the NY99 viral backbone by site-directed mutagenesis. A mutant containing the NS1-K110N and NS4A-F92L mutations exhibited a debilitated growth phenotype in DEF cells at 44 °C, similar to that of COAV997. One explanation for the subsistence of this genotype is that COAV997 was obtained from an area of California where avian host species might not present elevated temperatures. These data indicate that the NS1 and NS4A mutations identified in some WN02 isolates could reduce thermal stability and impede replication of virus at temperatures observed in febrile avian hosts.


Asunto(s)
Replicación Viral/efectos de la radiación , Virus del Nilo Occidental/crecimiento & desarrollo , Virus del Nilo Occidental/efectos de la radiación , Regiones no Traducidas 3' , Sustitución de Aminoácidos/genética , Animales , Línea Celular , Culicidae , Patos , Fibroblastos/virología , Genotipo , Datos de Secuencia Molecular , América del Norte , Mutación Puntual , ARN Viral/genética , Análisis de Secuencia de ADN , Homología de Secuencia , Temperatura , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética , Virus del Nilo Occidental/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA