Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Oxid Med Cell Longev ; 2022: 1992039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368871

RESUMEN

Growing concerns on free radicals are the oxidative processes associated with physiological damage. The consumption of functional foods and use of plants with antioxidant capacity are widespread. Given the importance of determining antioxidant capacity in relation to the therapeutic effect, this study was aimed at evaluating cinnamon extract (Cinnamomum sp.) in commercial samples by spectrophotometric and voltammetric methods and assessing the vascular activity of some samples. The spectrophotometric methods performed were DPPH (1,1-diphenyl-2-picrihydrazine), ABTS (2,21-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)), and Folin-Ciocalteu radical sequestration assays. For the electrochemical experiments, a three-electrode system was used, consisting of carbon paste electrode, platinum wire, and Ag/AgCl/KClsat, representing the working, auxiliary, and reference electrodes, respectively. The electroanalytical methods used were differential pulse, square wave, and cyclic voltammetries. The extracts were prepared in hydroalcoholic solution. A calibration curve with gallic acid was calculated to quantify their equivalent amounts in the analyzed extract. The correlation between the electrochemical approach and the total phenols calculated by the ABTS, DPPH, and Folin-Ciocalteu methods was 0.63, 0.7, and 0.73, respectively, with 1 being an ideal directly proportional correlation. The correlation between spectrophotometric methods was 0.83. A biosensor was developed in a carbon paste electrode using the enzyme laccase, obtained by the fungus Marasmiellus colocasiae. It was observed that the antioxidant profile of the cinnamon samples had an analytical sign improvement of up to 4 times when compared with the electrode without the modification. The samples were analyzed by mass spectrometer, and the main chemical markers found were coumarin, cinnamaldehyde, and eugenol. Pharmacological trials showed that these samples also induce a significant vasorelaxant effect associated to antioxidant potential on vascular injury induced by oxidative stress. Thus, cinnamon showed a high antioxidant capacity, in agreement with the results obtained in other studies, emphasizing its importance as a functional food.


Asunto(s)
Antioxidantes , Cinnamomum zeylanicum , Antioxidantes/farmacología , Oxidación-Reducción , Fenoles , Espectrofotometría
2.
J Ethnopharmacol ; 289: 115019, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35074453

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hydrocotyle umbellata L. is a medicinal herb for the treatment of some health problems including hypertension, according to traditional medicine. Even so, its vascular effects and the pharmacological action mechanisms have not been analyzed. AIM OF THE STUDY: This experiment aimed to analyze the effects of hydroalcoholic extract of Hydrocotyle umbellata L. (HEHU) on isolated vessels and verify the interaction of hibalactone (chemical marker) against Cav1.2 channels using molecular docking. MATERIALS AND METHODS: Vascular reactivity experiments were performed using rat aortas with (E+) or without endothelium (E-) in an isolated organ bath. Computational molecular docking approaches were used to show the direct effect on L-type Ca2+ Channels. RESULTS: HEHU (0-560 µg/mL) induced relaxation of the pre-contracted arteries in a concentration-dependent manner. The maximum effect was higher in E+ (76.8 ± 4.1%) as compared to E- (47.3 ± 5.5%). Pre-treatment of E+ arteries with L-NAME or ODQ reduced the relaxation to similar level of E- arteries. The treatment of arteries with MDL-12,330 A, diclofenac, propranolol and atropine did not change the relaxation induced by HEHU. The contraction caused by internal Ca2+ release induced by caffeine was reduced after HEHU treatment. Moreover, the HEHU also impaired the contraction induced by Ca2+ influx stimulated with phenylephrine or high KCl. The docking study demonstrated the effectiveness of hibalactone in blocking the Cav1.2 channel. CONCLUSIONS: These findings show that HEHU induces vascular relaxation which is potentiated (but not dependent) by endothelial cells. Blocking of Ca2+ influx seems to be the main mechanism for the vascular effects of HEHU.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Centella/química , Extractos Vegetales/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/aislamiento & purificación , Masculino , Simulación del Acoplamiento Molecular , Ratas , Ratas Wistar , Vasodilatación/efectos de los fármacos , Vasodilatadores/aislamiento & purificación , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...