Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Nitric Oxide ; 138-139: 42-50, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37308032

RESUMEN

Lipids oxidation is a key risk factor for cardiovascular diseases. Lysophosphatidylcholine (LPC), the major component of oxidized LDL, is an important triggering agent for endothelial dysfunction and atherogenesis. Sodium butyrate, a short-chain fatty acid, has demonstrated atheroprotective properties. So, we evaluate the role of butyrate in LPC-induced endothelial dysfunction. Vascular response to phenylephrine (Phe) and acetylcholine (Ach) was performed in aortic rings from male mice (C57BL/6J). The aortic rings were incubated with LPC (10 µM) and butyrate (0.01 or 0.1 Mm), with or without TRIM (an nNOS inhibitor). Endothelial cells (EA.hy296) were incubated with LPC and butyrate to evaluate nitric oxide (NO) and reactive oxygen species (ROS) production, calcium influx, and the expression of total and phosphorylated nNOS and ERK½. We found that butyrate inhibited LPC-induced endothelial dysfunction by improving nNOS activity in aortic rings. In endothelial cells, butyrate reduced ROS production and increased nNOS-related NO release, by improving nNOS activation (phosphorylation at Ser1412). Additionally, butyrate prevented the increase in cytosolic calcium and inhibited ERk½ activation by LPC. In conclusion, butyrate inhibited LPC-induced vascular dysfunction by increasing nNOS-derived NO and reducing ROS production. Butyrate restored nNOS activation, which was associated with calcium handling normalization and reduction of ERK½ activation.


Asunto(s)
Lisofosfatidilcolinas , Óxido Nítrico , Masculino , Ratones , Animales , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/farmacología , Células Endoteliales/metabolismo , Calcio/metabolismo , Ratones Endogámicos C57BL , Ácido Butírico/metabolismo , Endotelio Vascular/metabolismo
3.
Front Bioeng Biotechnol ; 11: 1116917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911186

RESUMEN

Electrospinning emerged as a promising technique to produce scaffolds for cultivated meat in function of its simplicity, versatility, cost-effectiveness, and scalability. Cellulose acetate (CA) is a biocompatible and low-cost material that support cell adhesion and proliferation. Here we investigated CA nanofibers, associated or not with a bioactive annatto extract (CA@A), a food-dye, as potential scaffolds for cultivated meat and muscle tissue engineering. The obtained CA nanofibers were evaluated concerning its physicochemical, morphological, mechanical and biological traits. UV-vis spectroscopy and contact angle measurements confirmed the annatto extract incorporation into the CA nanofibers and the surface wettability of both scaffolds, respectively. SEM images revealed that the scaffolds are porous, containing fibers with no specific alignment. Compared with the pure CA nanofibers, CA@A nanofibers showed increased fiber diameter (420 ± 212 nm vs. 284 ± 130 nm). Mechanical properties revealed that the annatto extract induces a reduction of the stiffness of the scaffold. Molecular analyses revealed that while CA scaffold favored C2C12 myoblast differentiation, the annatto-loaded CA scaffold favored a proliferative state of these cells. These results suggest that the combination of cellulose acetate fibers loaded with annatto extract may be an interesting economical alternative for support long-term muscle cells culture with potential application as scaffold for cultivated meat and muscle tissue engineering.

4.
Biochem Biophys Res Commun ; 650: 21-29, 2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764209

RESUMEN

Atherosclerosis is characterized by the accumulation of lipid-laden cells in the arterial walls, resulting from dysregulation of cholesterol homeostasis in the macrophage, triggered by oxidized low-density lipoprotein (oxLDL). Previous studies have shown that fucoidan, a sulfated polysaccharide from brown seaweeds, has several atheroprotective activities, however, the mechanism of fucoidan protection is not fully understood. Thus, we investigated the effect of fucoidan on atherogenesis in apolipoprotein E-deficient (ApoE-/-) mice, on oxLDL uptake by macrophages, and on the expression of the flux-associated scavenger receptors by macrophages. Also, we examined the absorption and biodistribution of orally administered fucoidan. ApoE-/- mice fed on a cholesterol-rich diet supplemented with 1% fucoidan showed reduced dyslipidemia and atherosclerosis. Fucoidan was detected in blood and peripheral tissue after gavage, suggesting that it can exert direct systemic effects. In vitro, fucoidan reduced macrophage oxLDL uptake, which resulted in lower foam cell formation. This effect was associated with downregulation of the cholesterol influx-associated scavenger receptor (SR)-A expression, and upregulation of the cholesterol efflux-associated SR-B1 expression. In conclusion, fucoidan prevented oxLDL-mediated foam cell formation in macrophages by downregulating SR-A1/2 and by up-regulating SR-B1.


Asunto(s)
Aterosclerosis , Células Espumosas , Ratones , Animales , Células Espumosas/metabolismo , Distribución Tisular , Ratones Noqueados para ApoE , Macrófagos/metabolismo , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo , Polisacáridos/metabolismo , Aterosclerosis/metabolismo , Receptores Depuradores/metabolismo , Apolipoproteínas E/metabolismo
5.
Front Nutr ; 10: 1297926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249608

RESUMEN

Overcoming the challenge of creating thick, tissue-resembling muscle constructs is paramount in the field of cultivated meat production. This study investigates the remarkable potential of random cellulose acetate nanofibers (CAN) as a transformative scaffold for muscle tissue engineering (MTE), specifically in the context of cultivated meat applications. Through a comparative analysis between random and aligned CAN, utilizing C2C12 and H9c2 myoblasts, we unveil the unparalleled capabilities of random CAN in facilitating muscle differentiation, independent of differentiation media, by exploiting the YAP/TAZ-related mechanotransduction pathway. In addition, we have successfully developed a novel process for stacking cell-loaded CAN sheets, enabling the production of a three-dimensional meat product. C2C12 and H9c2 loaded CAN sheets were stacked (up to four layers) to form a ~300-400 µm thick tissue 2 cm in length, organized in a mesh of uniaxial aligned cells. To further demonstrate the effectiveness of this methodology for cultivated meat purposes, we have generated thick and viable constructs using chicken muscle satellite cells (cSCs) and random CAN. This groundbreaking discovery offers a cost-effective and biomimetic solution for cultivating and differentiating muscle cells, forging a crucial link between tissue engineering and the pursuit of sustainable and affordable cultivated meat production.

6.
Biochim Biophys Acta Biomembr ; 1864(9): 183951, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35504320

RESUMEN

Cholesterol sequestration from plasma membrane has been shown to induce lipid packing disruption, causing actin cytoskeleton reorganization and polymerization, increasing cell stiffness and inducing lysosomal exocytosis in non-professional phagocytes. Similarly, oxidized form of low-density lipoprotein (oxLDL) has also been shown to disrupt lipid organization and packing in endothelial cells, leading to biomechanics alterations that interfere with membrane injury and repair. For macrophages, much is known about oxLDL effects in cell activation, cytokine production and foam cell formation. However, little is known about its impact in the organization of macrophage membrane structured domains and cellular mechanics, the focus of the present study. Treatment of bone marrow-derived macrophages (BMDM) with oxLDL not only altered membrane structure, and potentially the distribution of raft domains, but also induced actin rearrangement, diffuse integrin distribution and cell shrinkage, similarly to observed upon treatment of these cells with MßCD. Those alterations led to decreased migration efficiency. For both treatments, higher co-localization of actin cytoskeleton and GM1 was observed, indicating a similar mechanism of action involving raft-like domain dynamics. Lastly, like MßCD treatment, oxLDL also induced lysosomal spreading in BMDM. We propose that OxLDL induced re-organization of membrane/cytoskeleton complex in macrophages can be attributed to the insertion of oxysterols into the membrane, which lead to changes in lipid organization and disruption of membrane structure, similar to the effect of cholesterol depletion by MßCD treatment. These results indicate that oxLDL can induce physical alterations in the complex membrane/cytoskeleton of macrophages, leading to significant biomechanical changes that compromise cell behavior.


Asunto(s)
Células Endoteliales , Lipoproteínas LDL , Fenómenos Biomecánicos , Colesterol/química , Células Endoteliales/metabolismo , Lipoproteínas LDL/química , Macrófagos
7.
Front Cell Infect Microbiol ; 11: 788482, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071040

RESUMEN

Trypanosoma cruzi invades non-professional phagocytic cells by subverting their membrane repair process, which is dependent on membrane injury and cell signaling, intracellular calcium increase, and lysosome recruitment. Cells lacking lysosome-associated membrane proteins 1 and 2 (LAMP1 and LAMP2) are less permissive to parasite invasion but more prone to parasite intracellular multiplication. Several passages through a different intracellular environment can significantly change T. cruzi's gene expression profile. Here, we evaluated whether one single passage through LAMP-deficient (KO) or wild-type (WT) fibroblasts, thus different intracellular environments, could influence T. cruzi Y strain trypomastigotes' ability to invade L6 myoblasts and WT fibroblasts host cells. Parasites released from LAMP2 KO cells (TcY-L2-/-) showed higher invasion, calcium signaling, and membrane injury rates, for the assays in L6 myoblasts, when compared to those released from WT (TcY-WT) or LAMP1/2 KO cells (TcY-L1/2-/-). On the other hand, TcY-L1/2-/- showed higher invasion, calcium signaling, and cell membrane injury rates, for the assays in WT fibroblasts, compared to TcY-WT and TcY-L1/2-/-. Albeit TcY-WT presented an intermediary invasion and calcium signaling rates, compared to the others, in WT fibroblasts, they induced lower levels of injury, which reinforces that signals mediated by surface membrane protein interactions also have a significant contribution to trigger host cell calcium signals. These results clearly show that parasites released from WT or LAMP KO cells are distinct from each other. Additionally, these parasites' ability to invade the cell may be distinct depending on which cell type they interact with. Since these alterations most likely would reflect differences among parasite surface molecules, we also evaluated their proteome. We identified few protein complexes, membrane, and secreted proteins regulated in our dataset. Among those are some members of MASP, mucins, trans-sialidases, and gp63 proteins family, which are known to play an important role during parasite infection and could correlate to TcY-WT, TcY-L1/2-/-, and TcY-L2-/- biological behavior.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Células Cultivadas , Enfermedad de Chagas/patología , Fibroblastos/parasitología , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/genética , Lisosomas , Proteínas de la Membrana , Ratones , Mioblastos/parasitología
8.
Sci Rep ; 8(1): 13335, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30190603

RESUMEN

Detection of genetic exchange has been a limiting factor to deepen the knowledge on the mechanisms by which Trypanosoma cruzi is able to generate progeny and genetic diversity. Here we show that incorporation of halogenated thymidine analogues, followed by immunostaining, is a reliable method not only to detect T. cruzi fused-cell hybrids, but also to quantify their percentage in populations of this parasite. Through this approach, we were able to detect and quantify fused-cell hybrids of T. cruzi clones CL Brener and Y. Given the increased detection of fused-cell hybrids in naturally-occurring hybrid CL Brener strain, which displays increased levels of RAD51 and BRCA2 transcripts, we further investigated the role of Rad51 - a recombinase involved in homologous recombination - in the process of genetic exchange. We also verified that the detection of fused-cell hybrids in T. cruzi overexpressing RAD51 is increased when compared to wild-type cells, suggesting a key role for Rad51 either in the formation or in the stabilization of fused-cell hybrids in this organism.


Asunto(s)
Recombinación Homóloga/fisiología , Proteínas Protozoarias/metabolismo , Recombinasa Rad51/metabolismo , Trypanosoma cruzi/enzimología , Proteínas Protozoarias/genética , Recombinasa Rad51/genética , Trypanosoma cruzi/genética
9.
Parasitol Int ; 64(2): 135-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25463313

RESUMEN

Trypanosoma cruzi is an intracellular parasite that depends on host cell lysosome recruitment and fusion for cell infection. Recently, we have shown that host cells present two differentially regulated lysosome pools. Treatment with methyl-beta cyclodextrin, a drug able to sequester cholesterol from plasma membrane, triggers the exocytosis of peripheral lysosomes, while treatment with Latrunculin-A, an actin depolymerizing drug, recruits a more internal pool. In this work we aimed to study which pool is used by the T. cruzi during invasion. We have shown that invasion is impaired when cells are previously treated with methyl-beta cyclodextrin, but not with Latrunculin-A, indicating that T. cruzi uses the cortical pool for invasion.


Asunto(s)
Lisosomas/fisiología , Miocitos Cardíacos/parasitología , Trypanosoma cruzi/fisiología , Animales , Animales Recién Nacidos , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Membrana Celular , Fusión de Membrana , Ratones , Tiazolidinas/administración & dosificación , Tiazolidinas/farmacología , beta-Ciclodextrinas/administración & dosificación , beta-Ciclodextrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA