Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1353106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550584

RESUMEN

Introduction: NETosis, the mechanism by which neutrophils release extracellular traps (NETs), is closely related to inflammation. During the allogeneic hematopoietic stem cell transplantation (allo-HSCT), different stimuli can induce NETs formation. Inflammation and endothelial injury have been associated with acute graft-versus-host disease (aGVHD) and complications after allo-HSCT. We focus on the study of NETosis and its relation with cytokines, hematological and biochemical parameters and clinical outcomes before, during and after allo-HSCT. Methods: We evaluate the capacity of plasma samples from allo-HSCT patients to induce NETosis, in a cell culture model. Plasma samples from patients undergoing allo-HSCT had a stronger higher NETs induction capacity (NETsIC) than plasma from healthy donors throughout the transplantation process. An optimal cut-off value by ROC analysis was established to discriminate between patients whose plasma triggered NETosis (NETs+IC group) and those who did not (NETs-IC group). Results: Prior to conditioning treatment, the capacity of plasma samples to trigger NETosis was significantly correlated with the Endothelial Activation and Stress Index (EASIX) score. At day 5 after transplant, patients with a positive NETsIC had higher interleukin (IL)-6 and C-reactive protein (CRP) levels and also a higher Modified EASIX score (M-EASIX) than patients with a negative NETsIC. EASIX and M-EASIX scores seek to determine inflammation and endothelium damage, therefore it could indicate a heightened immune response and inflammation in the group of patients with a positive NETsIC. Cytokine levels, specifically IL-8 and IL-6, significantly increased after allo-HSCT with peak levels reached on day 10 after graft infusion. Only, IL-10 and IL-6 levels were significantly higher in patients with a positive NETsIC. In our small cohort, higher IL-6 and IL-8 levels were related to early severe complications (before day 15 after transplant). Discussion: Although early complications were not related to NETosis by itself, NETosis could predict overall non-specific but clinically significant complications during the full patient admission. In summary, NETosis can be directly induced by plasma from allo-HSCT patients and NETsIC was associated with clinical indicators of disease severity, cytokines levels and inflammatory markers.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Interleucina-6 , Humanos , Interleucina-8 , Citocinas , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Inflamación
2.
Front Immunol ; 9: 1097, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29896193

RESUMEN

Multiple sclerosis (MS) is considered a T cell-mediated autoimmune disease, although several evidences also demonstrate a B cell involvement in its etiology. Follicular T helper (Tfh) cells, a CXCR5-expressing CD4+ T cell subpopulation, are essential in the regulation of B cell differentiation and maintenance of humoral immunity. Alterations in circulating (c)Tfh distribution and/or function have been associated with autoimmune diseases including MS. Dimethyl fumarate (DMF) is a recently approved first-line treatment for relapsing-remitting MS (RRMS) patients whose mechanism of action is not completely understood. The aim of our study was to compare cTfh subpopulations between RRMS patients and healthy subjects and evaluate the impact of DMF treatment on these subpopulations, relating them to changes in B cells and humoral response. We analyzed, by flow cytometry, the distribution of cTfh1 (CXCR3+CCR6-), cTfh2 (CXCR3-CCR6-), cTfh17 (CXCR3-CCR6+), and the recently described cTfh17.1 (CXCR3+CCR6+) subpopulations of CD4+ Tfh (CD45RA-CXCR5+) cells in a cohort of 29 untreated RRMS compared to healthy subjects. CD4+ non-follicular T helper (Th) cells (CD45RA-CXCR5-) were also studied. We also evaluated the effect of DMF treatment on these subpopulations after 6 and 12 months treatment. Untreated RRMS patients presented higher percentages of cTfh17.1 cells and lower percentages of cTfh2 cells consistent with a pro-inflammatory bias compared to healthy subjects. DMF treatment induced a progressive increase in cTfh2 cells, accompanied by a decrease in cTfh1 and the pathogenic cTfh17.1 cells. A similar decrease of non-follicular Th1 and Th17.1 cells in addition to an increase in the anti-inflammatory Th2 subpopulation were also detected upon DMF treatment, accompanied by an increase in naïve B cells and a decrease in switched memory B cells and serum levels of IgA, IgG2, and IgG3. Interestingly, this effect was not observed in three patients in whom DMF had to be discontinued due to an absence of clinical response. Our results demonstrate a possibly pathogenic cTfh pro-inflammatory profile in RRMS patients, defined by high cTfh17.1 and low cTfh2 subpopulations that is reverted by DMF treatment. Monitoring cTfh subsets during treatment may become a biological marker of DMF effectiveness.


Asunto(s)
Dimetilfumarato/uso terapéutico , Inmunosupresores/uso terapéutico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Dimetilfumarato/farmacología , Femenino , Humanos , Inmunoglobulinas/sangre , Inmunoglobulinas/inmunología , Inmunofenotipificación , Inmunosupresores/farmacología , Estudios Longitudinales , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Resultado del Tratamiento
3.
Front Immunol ; 8: 174, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28289412

RESUMEN

Germinal center follicular T helper (GCTfh) cells are essential players in the differentiation of B cells. Circulating follicular T helper (cTfh) cells share phenotypic and functional properties with GCTfh cells. Distinct subpopulations of cTfh with different helper capabilities toward B cells can be identified: cTfh1 (CXCR3+CCR6-), cTfh2 (CXCR3-CCR6-), and cTfh17 (CXCR3-CCR6+). Alterations in cTfh function and/or distribution have been associated with autoimmunity, infectious diseases, and more recently, with several monogenic immunodeficiencies. Common variable immunodeficiency (CVID) disease is the commonest symptomatic primary immunodeficiency with a genetic cause identified in only 2-10% of patients. Although a heterogeneous disease, most patients show a characteristic defective B cell differentiation into memory B cells or antibody-secreting cells. We investigated if alterations in CVID cTfh cells frequency or distribution into cTfh1, cTfh2, and cTfh17 subpopulations and regulatory follicular T (Tfr) cells could be related to defects in CVID B cells. We found increased percentages of cTfh exhibiting higher programmed death-1 expression and altered subpopulations distribution in smB- CVID patients. In contrast to smB+ patients and controls, cTfh from smB- CVID patients show increased cTfh1 and decreased cTfh17 subpopulation percentages and increased CXCR3+CCR6+ cTfh, a population analogous to the recently described pathogenic Th17.1. Moreover, Tfr cells are remarkably decreased only in smB- CVID patients. In conclusion, increased cTfh17.1 and cTfh1/cTfh17 ratio in CVID patients could influence B cell fate in smB- CVID patients, with a more compromised B cell compartment, and the decrease in Tfr cells may lead to high risk of autoimmune conditions in CVID patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...