Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 206(3): 267-279, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30880083

RESUMEN

Noncoding RNA (ncRNA) has a key role in regulating gene expression, mediating fundamental processes and diseases via a variety of yet unknown mechanisms. Here, we review recent applications of conventional and enhanced Molecular Dynamics (MD) simulations methods to address the mechanistic function of large biomolecular systems that are tightly involved in the ncRNA function and that are of key importance in life sciences. This compendium focuses of three biomolecular systems, namely the CRISPR-Cas9 genome editing machinery, group II intron ribozyme and the ribonucleoprotein complex of the spliceosome, which edit and process ncRNA. We show how the application of a novel accelerated MD simulations method has been key in disclosing the conformational transitions underlying RNA binding in the CRISPR-Cas9 complex, suggesting a mechanism for RNA recruitment and clarifying the conformational changes required for attaining genome editing. As well, we discuss the use of mixed quantum-classical MD simulations in deciphering the catalytic mechanism of RNA splicing as operated by group II intron ribozyme, one of the largest ncRNA structures crystallized so far. Finally, we debate the future challenges and opportunities in the field, discussing the recent application of MD simulations for unraveling the functional biophysics of the spliceosome, a multi-mega Dalton complex of proteins and small nuclear RNAs that performs RNA splicing in humans. This showcase of applications highlights the current talent of MD simulations to dissect atomic-level details of complex biomolecular systems instrumental for the design of finely engineered genome editing machines. As well, this review aims at inspiring future investigations of several other ncRNA regulatory systems, such as micro and small interfering RNAs, which achieve their function and specificity using RNA-based recognition and targeting strategies.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/tendencias , Conformación de Ácido Nucleico , ARN no Traducido/genética , Humanos , Simulación de Dinámica Molecular , Proteínas/química , Proteínas/genética , Empalme del ARN/genética , ARN no Traducido/ultraestructura
2.
Sci Signal ; 12(562)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30600259

RESUMEN

Atypical protein kinase C (aPKC) isozymes are unique in the PKC superfamily in that they are not regulated by the lipid second messenger diacylglycerol, which has led to speculation about whether a different second messenger acutely controls their function. Here, using a genetically encoded reporter that we designed, aPKC-specific C kinase activity reporter (aCKAR), we found that the lipid mediator sphingosine 1-phosphate (S1P) promoted the cellular activity of aPKC. Intracellular S1P directly bound to the purified kinase domain of aPKC and relieved autoinhibitory constraints, thereby activating the kinase. In silico studies identified potential binding sites on the kinase domain, one of which was validated biochemically. In HeLa cells, S1P-dependent activation of aPKC suppressed apoptosis. Together, our findings identify a previously undescribed molecular mechanism of aPKC regulation, a molecular target for S1P in cell survival regulation, and a tool to further explore the biochemical and biological functions of aPKC.


Asunto(s)
Proteínas Luminiscentes/metabolismo , Lisofosfolípidos/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Animales , Apoptosis , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Activación Enzimática , Células HeLa , Células Hep G2 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Luminiscentes/genética , Células MCF-7 , Microscopía Fluorescente , Simulación del Acoplamiento Molecular , Unión Proteica , Proteína Quinasa C/genética , Esfingosina/metabolismo
4.
Arch Biochem Biophys ; 544: 128-41, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24096172

RESUMEN

The flavoenzyme UDP-galactopyranose mutase (UGM) is a key enzyme in galactofuranose biosynthesis. The enzyme catalyzes the 6-to-5 ring contraction of UDP-galactopyranose to UDP-galactofuranose. Galactofuranose is absent in humans yet is an essential component of bacterial and fungal cell walls and a cell surface virulence factor in protozoan parasites. Thus, inhibition of galactofuranose biosynthesis is a valid strategy for developing new antimicrobials. UGM is an excellent target in this effort because the product of the UGM reaction represents the first appearance of galactofuranose in the biosynthetic pathway. The UGM reaction is redox neutral, which is atypical for flavoenzymes, motivating intense examination of the chemical mechanism and structural features that tune the flavin for its unique role in catalysis. These studies show that the flavin functions as nucleophile, forming a flavin-sugar adduct that facilitates galactose-ring opening and contraction. The 3-dimensional fold is novel and conserved among all UGMs, however the larger eukaryotic enzymes have additional secondary structure elements that lead to significant differences in quaternary structure, substrate conformation, and conformational flexibility. Here we present a comprehensive review of UGM three-dimensional structure, provide an update on recent developments in understanding the mechanism of the enzyme, and summarize computational studies of active site flexibility.


Asunto(s)
Transferasas Intramoleculares/química , Transferasas Intramoleculares/metabolismo , Animales , Bacterias/química , Bacterias/enzimología , Activación Enzimática , Flavinas/química , Flavinas/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
5.
Protein Sci ; 21(10): 1429-43, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22821874

RESUMEN

The sarcoplasmic reticulum Ca²âº ATPase (SERCA) is a membrane-bound pump that utilizes ATP to drive calcium ions from the myocyte cytosol against the higher calcium concentration in the sarcoplasmic reticulum. Conformational transitions associated with Ca²âº-binding are important to its catalytic function. We have identified collective motions that partition SERCA crystallographic structures into multiple catalytically-distinct states using principal component analysis. Using Brownian dynamics simulations, we demonstrate the important contribution of surface-exposed, polar residues in the diffusional encounter of Ca²âº. Molecular dynamics simulations indicate the role of Glu309 gating in binding Ca²âº, as well as subsequent changes in the dynamics of SERCA's cytosolic domains. Together these data provide structural and dynamical insights into a multistep process involving Ca²âº binding and catalytic transitions.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sitios de Unión , Calcio/química , Bases de Datos de Proteínas , Simulación de Dinámica Molecular , Análisis de Componente Principal , Estructura Terciaria de Proteína , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Termodinámica
6.
Bioorg Med Chem Lett ; 21(23): 7064-7, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22014548

RESUMEN

The complex and highly impermeable cell wall of Mycobacterium tuberculosis (Mtb) is largely responsible for the ability of the mycobacterium to resist the action of chemical therapeutics. An L-rhamnosyl residue, which occupies an important anchoring position in the Mtb cell wall, is an attractive target for novel anti-tuberculosis drugs. In this work, we report a virtual screening (VS) study targeting Mtb dTDP-deoxy-L-lyxo-4-hexulose reductase (RmlD), the last enzyme in the L-rhamnosyl synthesis pathway. Through two rounds of VS, we have identified four RmlD inhibitors with half inhibitory concentrations of 0.9-25 µM, and whole-cell minimum inhibitory concentrations of 20-200 µg/ml. Compared with our previous high throughput screening targeting another enzyme involved in L-rhamnosyl synthesis, virtual screening produced higher hit rates, supporting the use of computational methods in future anti-tuberculosis drug discovery efforts.


Asunto(s)
Antituberculosos , Diseño Asistido por Computadora , Descubrimiento de Drogas , Inhibidores Enzimáticos , Mycobacterium tuberculosis , Deshidrogenasas del Alcohol de Azúcar/antagonistas & inhibidores , Antituberculosos/química , Antituberculosos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Concentración 50 Inhibidora , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología
7.
Chem Biol Drug Des ; 73(1): 26-38, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19152632

RESUMEN

In mycobacteria, the biosynthesis of the precursors to the essential isoprenoids, isopentenyl diphosphate and dimethylallyl pyrophosphate is carried out by the methylerythritol phosphate pathway. This route of synthesis is absent in humans, who utilize the alternative mevalonate acid route, thus making the enzymes of the methylerythritol phosphate pathway of chemotherapeutic interest. One such identified target is the second enzyme of the pathway, 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Only limited information is currently available concerning the catalytic mechanism and structural dynamics of this enzyme, and only recently has a crystal structure of Mycobacterium tuberculosis species of this enzyme been resolved including all factors required for binding. Here, the dynamics of the enzyme is studied in complex with NADPH, Mn2+, in the presence and absence of the fosmidomycin inhibitor using conventional molecular dynamics and an enhanced sampling technique, reversible digitally filtered molecular dynamics. The simulations reveal significant differences in the conformational dynamics of the vital catalytic loop between the inhibitor-free and inhibitor-bound enzyme complexes and highlight the contributions of conserved residues in this region. The substantial fluctuations observed suggest that 1-deoxy-D-xylulose 5-phosphate reductoisomerase may be a promising target for computer-aided drug discovery through the relaxed complex method.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Complejos Multienzimáticos/química , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/química , Conformación Proteica , Isomerasas Aldosa-Cetosa/metabolismo , Dominio Catalítico , Análisis por Conglomerados , Simulación por Computador , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Oxidorreductasas/metabolismo , Pentosafosfatos/metabolismo , Análisis de Componente Principal
8.
Chem Biol Interact ; 175(1-3): 303-4, 2008 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-18452905

RESUMEN

Proteins have been metaphorically described--due to the introduction and extraordinary advances in biomolecular dynamics and computational biophysics over the past decades--as "kicking and screaming" molecules [G. Weber, Adv. Protein Chem. 29 (1975) 1-83]. In fact, dynamic fluctuations in protein structural conformation have been known to play an important role in protein function. However, fundamental mechanisms by which protein fluctuations couple with catalytic function of particular enzymes remain poorly understood. To understand the dynamical properties of acetylcholinesterase (AChE) in rapid termination of cationic neurotransmitter, acetylcholine at neurosynaptic junctions, multiple molecular dynamics (MD) trajectories of AChE in the presence and absence of its inhibitors [J.M. Bui, J.A. McCammon, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 15451-15456; J.M. Bui, Z. Radic, P. Taylor, J.A. McCammon, Biophys. J. 90 (2006) 3280-3287; J.M. Bui, K. Tai, J.A. McCammon, J. Am. Chem. Soc. 126 (2004) 7198-7205; J.M. Bui, R.H. Henchman, J.A. McCammon, Biophys. J. 85 (2003) 2267-2272] have been conducted and correlated with its inhibitory mechanisms. The intrinsic flexibilities of AChE, particularly of the long omega loop, are important in facilitating the ligand's inhibition of the enzyme.


Asunto(s)
Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Biocatálisis , Modelos Moleculares , Conformación Proteica
9.
Biopolymers ; 85(5-6): 490-7, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17274025

RESUMEN

Peptide insertion, positioning, and stabilization in a model membrane are probed via an all-atom molecular dynamics (MD) simulation. One peptide (WL5) is simulated in each leaflet of a solvated dimyristoylglycero-3-phosphate (DMPC) membrane. Within the first 5 ns, the peptides spontaneously insert into the membrane and then stabilize during the remaining 70 ns of simulation time. In both leaflets, the peptides localize to the membrane interface, and this localization is attributed to the formation of peptide-lipid hydrogen bonds. We show that the single tryptophan residue in each peptide contributes significantly to these hydrogen bonds; specifically, the nitrogen heteroatom of the indole ring plays a critical role. The tilt angles of the indole rings relative to the membrane normal in the upper and lower leaflets are approximately 26 degrees and 54 degrees , respectively. The tilt angles of the entire peptide chain are 62 degrees and 74 degrees . The membrane induces conformations of the peptide that are characteristic of beta-sheets, and the peptide enhances the lipid ordering in the membrane. Finally, the diffusion rate of the peptides in the membrane plane is calculated (based on experimental peptide concentrations) to be approximately 6 A(2)/ns, thus suggesting a 500 ns time scale for intermolecular interactions.


Asunto(s)
Dimiristoilfosfatidilcolina/química , Proteínas de la Membrana/química , Oligopéptidos/química , Simulación por Computador , Dimiristoilfosfatidilcolina/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Estructura Secundaria de Proteína , Triptófano/química
10.
Chem Biol Drug Des ; 67(5): 336-45, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16784458

RESUMEN

The Relaxed Complex method, an approach to structure-based drug design that incorporates the flexibilities of both the ligand and target protein, was applied to the immunodeficiency virus protease system. The control cases used AutoDock3.0.5 to dock a fully flexible version of the prospective drug JE-2147 (aka SM-319777 or KNI-764) to large ensembles of conformations extracted from conventional, all atom, explicitly solvated molecular dynamic simulations of the wild type, and the V82F/I84V drug-resistant mutant of HIV-1 protease. The best set of run parameters from the control cases produced robust results when used against 2200 different conformations of the wild-type HIV-1 protease or against 2200 conformations of the mutant. The results of the control cases, the published advice from experts, and structural intuition were used to design a new series of 23 potential active site inhibitors. The compounds were evaluated by docking them against 700 different conformations of the V82F/I84V mutant. The results of this first round of lead optimization were quite promising. Approximately one-third of that series performed at least slightly better than the parent compound, and four of those compounds displayed significantly better binding affinities against that drug-resistant mutant (within our computational model).


Asunto(s)
Diseño de Fármacos , Farmacorresistencia Viral , Inhibidores de la Proteasa del VIH/química , Proteasa del VIH/efectos de los fármacos , VIH-1/enzimología , Sustitución de Aminoácidos , Sitios de Unión , Simulación por Computador , Dipéptidos/química , Dipéptidos/metabolismo , Dipéptidos/farmacología , Proteasa del VIH/genética , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/efectos de los fármacos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Fenilbutiratos/química , Fenilbutiratos/metabolismo , Fenilbutiratos/farmacología
11.
J Chem Phys ; 122(24): 241103, 2005 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-16035738

RESUMEN

We show that our accelerated molecular-dynamics (MD) approach can extend the time scale in all-atom MD simulations of biopolymers. We also show that this technique allows for the kinetic rate information to be recaptured. In deducing the kinetic rates, the relationship between the local energetic roughness of the potential-energy landscape and the effective diffusion coefficient is established. These are demonstrated on a very slow but important biomolecular process: the dynamics of cis-trans-isomerization of Ser-Pro motifs. We do not only recapture the slow kinetic rates, which is difficult in traditional MD, but also obtain the underlying roughness of the energy landscape of proteins at atomistic resolution.


Asunto(s)
Algoritmos , Secuencias de Aminoácidos , Biopolímeros/química , Simulación por Computador , Difusión , Isomerismo , Cinética , Prolina/química , Conformación Proteica , Pliegue de Proteína , Serina/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA