Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IUBMB Life ; 75(6): 458-470, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36331397

RESUMEN

LncRNAs represent an abundant group of noncoding transcripts, some of which carry out important regulatory functions. To survey the biological and molecular roles of lncRNAs, reliable strategies for their genetic inactivation are required. Several lncRNA features make them challenging to target by genome editing. First, lncRNA loci often span large genomic distances. As such, full or partial deletion alleles are not always easy to generate and interpret as they might affect DNA regulatory elements. Second, in contrast to proteins, lncRNA transcripts are usually resistant to the minimally invasive approach of point substitutions. Third, lncRNA sequences exhibit rapid evolutionary turnover, impeding prediction and targeting of the specific functional sequence elements. Nonetheless, advances in genome editing and comparative genomics have expanded the repertoire of genetic strategies to dissect lncRNA functions in model organisms and cell lines. In this review, we discuss several approaches that have been used to generate lncRNA mutant alleles, focusing on vertebrate lncRNAs. We also briefly highlight comparative genomics approaches to identify conserved lncRNA sequence motifs, which represent attractive target sequences to abrogate lncRNA functions and to pinpoint functional contributions of these elements.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Genómica , Secuencia Conservada , Silenciador del Gen , Alelos
2.
Noncoding RNA ; 7(2)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208016

RESUMEN

Long non-coding RNAs (lncRNAs) contribute to cell fate decisions by modulating genome expression and stability. In the fission yeast Schizosaccharomyces pombe, the transition from mitosis to meiosis results in a marked remodeling of gene expression profiles, which ultimately ensures gamete production and inheritance of genetic information to the offspring. This key developmental process involves a set of dedicated lncRNAs that shape cell cycle-dependent transcriptomes through a variety of mechanisms, including epigenetic modifications and the modulation of transcription, post-transcriptional and post-translational regulations, and that contribute to meiosis-specific chromosomal events. In this review, we summarize the biology of these lncRNAs, from their identification to mechanism of action, and discuss their regulatory role in the control of gametogenesis.

3.
Nat Commun ; 12(1): 770, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536434

RESUMEN

Long non-coding RNAs (lncRNAs) contribute to the regulation of gene expression in response to intra- or extracellular signals but the underlying molecular mechanisms remain largely unexplored. Here, we identify an uncharacterized lncRNA as a central player in shaping the meiotic gene expression program in fission yeast. We report that this regulatory RNA, termed mamRNA, scaffolds the antagonistic RNA-binding proteins Mmi1 and Mei2 to ensure their reciprocal inhibition and fine tune meiotic mRNA degradation during mitotic growth. Mechanistically, mamRNA allows Mmi1 to target Mei2 for ubiquitin-mediated downregulation, and conversely enables accumulating Mei2 to impede Mmi1 activity, thereby reinforcing the mitosis to meiosis switch. These regulations also occur within a unique Mmi1-containing nuclear body, positioning mamRNA as a spatially-confined sensor of Mei2 levels. Our results thus provide a mechanistic basis for the mutual control of gametogenesis effectors and further expand our vision of the regulatory potential of lncRNAs.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Meiosis/genética , Mitosis/genética , ARN de Hongos/genética , ARN Largo no Codificante/genética , Schizosaccharomyces/genética , Unión Proteica , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
4.
Sci Rep ; 10(1): 1034, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974447

RESUMEN

Timely and accurate expression of the genetic information relies on the integration of environmental cues and the activation of regulatory networks involving transcriptional and post-transcriptional mechanisms. In fission yeast, meiosis-specific transcripts are selectively targeted for degradation during mitosis by the EMC complex, composed of Erh1, the ortholog of human ERH, and the YTH family RNA-binding protein Mmi1. Here, we present the crystal structure of Erh1 and show that it assembles as a homodimer. Mutations of amino acid residues to disrupt Erh1 homodimer formation result in loss-of-function phenotypes, similar to erh1∆ cells: expression of meiotic genes is derepressed in mitotic cells and meiosis progression is severely compromised. Interestingly, formation of Erh1 homodimer is dispensable for interaction with Mmi1, suggesting that only fully assembled EMC complexes consisting of two Mmi1 molecules bridged by an Erh1 dimer are functionally competent. We also show that Erh1 does not contribute to Mmi1-dependent down-regulation of the meiosis regulator Mei2, supporting the notion that Mmi1 performs additional functions beyond EMC. Overall, our results provide a structural basis for the assembly of the EMC complex and highlight its biological relevance in gametogenic gene silencing and meiosis progression.


Asunto(s)
Proteínas Portadoras/química , Silenciador del Gen/fisiología , Meiosis/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Cristalografía por Rayos X , Complejos Multiproteicos/metabolismo , Conformación Proteica , Multimerización de Proteína , Schizosaccharomyces/genética
6.
Cell Rep ; 23(8): 2443-2454, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29791854

RESUMEN

Nup133 belongs to the Y-complex, a key component of the nuclear pore complex (NPC) scaffold. Studies on a null mutation in mice previously revealed that Nup133 is essential for embryonic development but not for mouse embryonic stem cell (mESC) proliferation. Using single-pore detection and average NE-fluorescence intensity, we find that Nup133 is dispensable for interphase and postmitotic NPC scaffold assembly in pluripotent mESCs. However, loss of Nup133 specifically perturbs the formation of the nuclear basket as manifested by the absence of Tpr in about half of the NPCs combined with altered dynamics of Nup153. We further demonstrate that its central domain mediates Nup133's role in assembling Tpr and Nup153 into a properly configured nuclear basket. Our findings thus revisit the role of the Y-complex in pore biogenesis and provide insights into the interplay between NPC scaffold architecture, nuclear basket assembly, and the generation of heterogeneity among NPCs.


Asunto(s)
Antígenos de Histocompatibilidad Menor/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Animales , Femenino , Imagenología Tridimensional , Interfase , Masculino , Ratones , Antígenos de Histocompatibilidad Menor/química , Proteínas de Complejo Poro Nuclear/química , Dominios Proteicos , Proteínas Proto-Oncogénicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...