Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Front Plant Sci ; 15: 1340641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495367

RESUMEN

The cultivation of summer vegetables in open-air nutrient film technique (NFT) hydroponics is limited due to the elevated nutrient solution temperature (NST). In this regard, non-electric evaporative-cooling techniques were explored to maintain NST in open-air NFT hydroponics. Four cooling setups were employed by wrapping polyvinyl chloride (PVC) grow pipes with one and two layers of either wet or dry jute fabrics and attaching them with coiled aluminum pipe buried inside a) wet sand-filled brick tunnels (Cooling Setup I), b) two inverted and vertically stacked earthen pots (Cooling Setup II), c) two inverted and vertically stacked earthen pots externally wrapped with wet jute fabric (Wrapped Cooling Setup II), and d) an earthen pitcher wrapped with wet jute fabric (Cooling Setup III). Wrapping grow pipes with two layers of wet jute fabric reduced NST by 5°C as compared to exposed (naked) grow pipes. The double-layer jute fabric-wrapped grow pipes produced 182% more reduction in NST in comparison to single layer-wrapped grow pipes. Additionally, the installation of Wrapped Cooling Setup II and Cooling Setup III outperformed Cooling Setup I and Cooling Setup II through NST reduction of approximately 4°C in comparison to control. Interestingly, Cooling Setup III showed its effectiveness through NST reductions of 193%, 88%, and 23% during 11 a.m.-12 p.m. as compared to Cooling Setup I, Cooling Setup II, and Wrapped Cooling Setup II, respectively. In contrast, Wrapped Cooling Setup II caused NST reductions of 168%, 191%, and 18% during 2-3 p.m. in comparison to Cooling Setup I, Cooling Setup II, and Cooling Setup III, respectively. Thus, the double-layer jute fabric-wrapped grow pipes linked with Wrapped Cooling Setup II can ensure summer vegetable cultivation in open-air NFT hydroponics as indicated by the survival of five out of 12 vegetable plants till harvest by maintaining NST between 26°C and 28°C.

3.
PeerJ ; 3: e1119, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26290787

RESUMEN

Arable soils are frequently subjected to contamination with copper as the consequence of imbalanced fertilization with manure and organic fertilizers and/or extensive use of copper-containing fungicides. In the present study, the exposure of stone-head cabbage (Brassica oleracea var. capitata) to elevated Cu(2+) levels resulted in leaf chlorosis and lesser biomass yield at ≥2 µ M. Root nitrate content was not statistically affected by Cu(2+) levels, although it was substantially decreased at ≥5 µ M Cu(2+) in the shoot. The decrease in nitrate contents can be related to lower nitrate uptake rates because of growth inhibition by Cu-toxicity. Shoot sulfate content increased strongly at ≥2 µ M Cu(2+) indicating an increase in demand for sulfur under Cu stress. Furthermore, at ≥2 µM concentration, concentration of water-soluble non-protein thiol increased markedly in the roots and to a smaller level in the shoot. When exposed to elevated concentrations of Cu(2+) the improved sulfate and water-soluble non-protein thiols need further studies for the evaluation of their direct relation with the synthesis of metal-chelating compounds (i.e., phytochelatins).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...