Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
NPJ Microgravity ; 10(1): 50, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693246

RESUMEN

Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.

2.
NPJ Microgravity ; 10(1): 16, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341423

RESUMEN

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.

3.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958700

RESUMEN

Ovarian cancer (OC) is the most lethal of all gynecological cancers. Due to vague symptoms, OC is mostly detected at advanced stages, with a 5-year survival rate (SR) of only 30%; diagnosis at stage I increases the 5-year SR to 90%, suggesting that early diagnosis is essential to cure OC. Currently, the clinical need for an early, reliable diagnostic test for OC screening remains unmet; indeed, screening is not even recommended for healthy women with no familial history of OC for fear of post-screening adverse events. Salivary diagnostics is considered a major resource for diagnostics of the future. In this work, we searched for OC biomarkers (BMs) by comparing saliva samples of patients with various stages of OC, breast cancer (BC) patients, and healthy subjects using an unbiased, high-throughput proteomics approach. We analyzed the results using both logistic regression (LR) and machine learning (ML) for pattern analysis and variable selection to highlight molecular signatures for OC and BC diagnosis and possibly re-classification. Here, we show that saliva is an informative test fluid for an unbiased proteomic search of candidate BMs for identifying OC patients. Although we were not able to fully exploit the potential of ML methods due to the small sample size of our study, LR and ML provided patterns of candidate BMs that are now available for further validation analysis in the relevant population and for biochemical identification.


Asunto(s)
Neoplasias Ováricas , Saliva , Humanos , Femenino , Proteómica/métodos , Modelos Logísticos , Neoplasias Ováricas/diagnóstico , Biomarcadores de Tumor , Aprendizaje Automático
4.
Pharmacol Res ; 198: 106993, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972722

RESUMEN

The treatment of bipolar disorder (BD) still remains a challenge. Melatonin (MLT), acting through its two receptors MT1 and MT2, plays a key role in regulating circadian rhythms which are dysfunctional in BD. Using a translational approach, we examined the implication and potential of MT1 receptors in the pathophysiology and psychopharmacology of BD. We employed a murine model of the manic phase of BD (Clock mutant (ClockΔ19) mice) to study the activation of MT1 receptors by UCM871, a selective partial agonist, in behavioral pharmacology tests and in-vivo electrophysiology. We then performed a high-resolution Nuclear Magnetic Resonance study on isolated membranes to characterize the molecular mechanism of interaction of UCM871. Finally, in a cohort of BD patients, we investigated the link between clinical measures of BD and genetic variants located in the MT1 receptor and CLOCK genes. We demonstrated that: 1) UCM871 can revert behavioral and electrophysiological abnormalities of ClockΔ19 mice; 2) UCM871 promotes the activation state of MT1 receptors; 3) there is a significant association between the number of severe manic episodes and MLT levels, depending on the genetic configuration of the MT1 rs2165666 variant. Overall, this work lends support to the potentiality of MT1 receptors as target for the treatment of BD.


Asunto(s)
Trastorno Bipolar , Melatonina , Psicofarmacología , Humanos , Ratones , Animales , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Melatonina/uso terapéutico , Melatonina/farmacología , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/agonistas
5.
NPJ Microgravity ; 9(1): 84, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865644

RESUMEN

The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: "How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?" This is one of the five major scientific issues of the ESA roadmap "Biology in Space and Analogue Environments". Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects.

6.
Sci Rep ; 13(1): 6025, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055439

RESUMEN

In proliferating multipotent retinal progenitors, transcription factors dynamics set the fate of postmitotic daughter cells, but postmitotic cell fate plasticity driven by extrinsic factors remains controversial. Transcriptome analysis reveals the concurrent expression by postmitotic rod precursors of genes critical for the Müller glia cell fate, which are rarely generated from terminally-dividing progenitors as a pair with rod precursors. By combining gene expression and functional characterisation in single cultured rod precursors, we identified a time-restricted window where increasing cell culture density switches off the expression of genes critical for Müller glial cells. Intriguingly, rod precursors in low cell culture density maintain the expression of genes of rod and glial cell fate and develop a mixed rod/Muller glial cells electrophysiological fingerprint, revealing rods derailment toward a hybrid rod-glial phenotype. The notion of cell culture density as an extrinsic factor critical for preventing rod-fated cells diversion toward a hybrid cell state may explain the occurrence of hybrid rod/MG cells in the adult retina and provide a strategy to improve engraftment yield in regenerative approaches to retinal degenerative disease by stabilising the fate of grafted rod precursors.


Asunto(s)
Neuroglía , Retina , Retina/metabolismo , Neuroglía/metabolismo , Diferenciación Celular/genética , Factores de Transcripción/metabolismo , Técnicas de Cultivo de Célula
7.
APL Bioeng ; 7(1): 016114, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36968453

RESUMEN

In this paper, we stimulated M1-like macrophages (obtained from U937 cells) with low-intensity pulsed ultrasound (LIPUS) to lower pro-inflammatory cytokine production. A systematic screening of different frequencies, intensities, duty cycles, and exposure times was performed. The optimal stimulation conditions leading to a marked decrease in the release of inflammatory cytokines were determined to be 38 kHz, 250 mW/cm2, 20%, and 90 min, respectively. Using these parameters, we verified that up to 72 h LIPUS did not affect cell viability, resulting in an increase in metabolic activity and in a reduction of reactive oxygen species (ROS) production. Moreover, we found that two mechanosensitive ion channels (PIEZO1 and TRPV1) were involved in the LIPUS-mediated cytokine release modulation. We also assessed the role of the nuclear factor κB (NF-κB) signaling pathway and observed an enhancement of actin polymerization. Finally, transcriptomic data suggested that the bioeffects of LIPUS treatment occur through the modulation of p38 MAPK signaling pathway.

8.
Biomedicines ; 11(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979630

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs with the crucial regulatory functions of gene expression at post-transcriptional level, detectable in cell and tissue extracts, and body fluids. For their stability in body fluids and accessibility to sampling, circulating miRNAs and changes of their concentration may represent suitable disease biomarkers, with diagnostic and prognostic relevance. A solid literature now describes the profiling of circulating miRNA signatures for several tumor types. Among body fluids, saliva accurately reflects systemic pathophysiological conditions, representing a promising diagnostic resource for the future of low-cost screening procedures for systemic diseases, including cancer. Here, we provide a review of literature about miRNAs as potential disease biomarkers with regard to ovarian cancer (OC), with an excursus about liquid biopsies, and saliva in particular. We also report on salivary miRNAs as biomarkers in oncological conditions other than OC, as well as on OC biomarkers other than miRNAs. While the clinical need for an effective tool for OC screening remains unmet, it would be advisable to combine within a single diagnostic platform, the tools for detecting patterns of both protein and miRNA biomarkers to provide the screening robustness that single molecular species separately were not able to provide so far.

9.
Head Neck Pathol ; 16(4): 998-1011, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35524772

RESUMEN

Paragangliomas and pheochromocytomas are rare neuroendocrine tumors, carrying a germ-line mutation in 40% patients. Sclerosis is a rare histological feature in these tumors. We investigated the possible correlations between histological findings, first sclerosis, immunoreactivity for vesicular catecholamine transporters (VMAT1/VMAT2) and patients' genotype in a consecutive series of 57 tumors (30 paragangliomas and 27 pheochromocytomas) from 55 patients. The M-GAPP grading system, sclerosis (0-3 scale) and VMAT1/VMAT2 (0-6 scale) immunoreactivity scores were assessed. Germ-line mutations of Succinate Dehydrogenase genes, RET proto-oncogene and Von Hippel Lindau tumor suppressor gene were searched. A germ-line mutation was found in 25/55 (45.5%) patients, mainly with paraganglioma (N = 14/30, 46,66%). Significant (score ≥ 2) tumor sclerosis was found in 9 (16.1%) tumors, i.e., 7 paragangliomas and 2 pheochromocytomas, most of them (8/9) from patients with a germ-line mutation. M-GAPP score was higher in the mutation status (in 76% of patients involving the SDHx genes, in 12% the RET gene and in the remaining 12% the VHL gene) and in tumors with sclerosis (p < 0.05). Spearman's rank correlation showed a strong correlation of germ-line mutations with M-GAPP (p < 0.0001) and sclerosis (p = 0.0027) scores; a significant correlation was also found between sclerosis and M-GAPP scores (p = 0.029). VMAT1 expression was higher in paragangliomas than in pheochromocytomas (p = 0.0006), the highest scores being more frequent in mutation-bearing patients' tumors (p < 0.01). VMAT2 was highly expressed in all but two negative tumors. Sclerosis and VMAT1 expression were higher in paragangliomas than in pheochromocytomas; tumor sclerosis, M-GAPP and VMAT1 scores were associated to germ-line mutations. Sclerosis might represent a histological marker of tumor susceptibility, prompting to genetic investigations in paragangliomas.


Asunto(s)
Proteínas de Transporte Vesicular de Monoaminas , Humanos , Proteínas de Transporte Vesicular de Monoaminas/genética , Esclerosis
10.
Molecules ; 26(24)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34946600

RESUMEN

Molecule interacting with CasL 2 (MICAL2), a cytoskeleton dynamics regulator, are strongly expressed in several human cancer types, especially at the invasive front, in metastasizing cancer cells and in the neo-angiogenic vasculature. Although a plethora of data exist and stress a growing relevance of MICAL2 to human cancer, it is worth noting that only one small-molecule inhibitor, named CCG-1423 (1), is known to date. Herein, with the aim to develop novel MICAL2 inhibitors, starting from CCG-1423 (1), a small library of new compounds was synthetized and biologically evaluated on human dermal microvascular endothelial cells (HMEC-1) and on renal cell adenocarcinoma (786-O) cells. Among the novel compounds, 10 and 7 gave interesting results in terms of reduction in cell proliferation and/or motility, whereas no effects were observed in MICAL2-knocked down cells. Aside from the interesting biological activities, this work provides the first structure-activity relationships (SARs) of CCG-1423 (1), thus providing precious information for the discovery of new MICAL2 inhibitors.


Asunto(s)
Anilidas , Benzamidas , Inhibidores Enzimáticos , Proteínas de Microfilamentos , Oxidorreductasas , Bibliotecas de Moléculas Pequeñas , Humanos , Anilidas/química , Anilidas/farmacología , Benzamidas/química , Benzamidas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/metabolismo , Estructura Molecular , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
11.
Cell Mol Life Sci ; 79(1): 28, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936031

RESUMEN

Microgravity and space radiation (SR) are two highly influential factors affecting humans in space flight (SF). Many health problems reported by astronauts derive from endothelial dysfunction and impaired homeostasis. Here, we describe the adaptive response of human, capillary endothelial cells to SF. Reference samples on the ground and at 1g onboard permitted discrimination between the contribution of microgravity and SR within the combined responses to SF. Cell softening and reduced motility occurred in SF cells, with a loss of actin stress fibers and a broader distribution of microtubules and intermediate filaments within the cytoplasm than in control cells. Furthermore, in space the number of primary cilia per cell increased and DNA repair mechanisms were found to be activated. Transcriptomics revealed the opposing effects of microgravity from SR for specific molecular pathways: SR, unlike microgravity, stimulated pathways for endothelial activation, such as hypoxia and inflammation, DNA repair and apoptosis, inhibiting autophagic flux and promoting an aged-like phenotype. Conversely, microgravity, unlike SR, activated pathways for metabolism and a pro-proliferative phenotype. Therefore, we suggest microgravity and SR should be considered separately to tailor effective countermeasures to protect astronauts' health.


Asunto(s)
Autofagia , Capilares/citología , Radiación Cósmica , Células Endoteliales/efectos de la radiación , Transducción de Señal , Ingravidez , Apoptosis , Biomarcadores/metabolismo , Línea Celular , Supervivencia Celular , Cromosomas Humanos/metabolismo , Citoesqueleto/metabolismo , Daño del ADN , Fluorescencia , Regulación de la Expresión Génica , Genoma Humano , Humanos , Masculino , Mecanotransducción Celular , Modelos Biológicos , Transducción de Señal/efectos de la radiación , Vuelo Espacial , Estrés Fisiológico , Homeostasis del Telómero , Transcriptoma/genética
12.
Cells ; 10(9)2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34572137

RESUMEN

Inherited retinal degenerations (IRD) affecting either photoreceptors or pigment epithelial cells cause progressive visual loss and severe disability, up to complete blindness. Retinal organoids (ROs) technologies opened up the development of human inducible pluripotent stem cells (hiPSC) for disease modeling and replacement therapies. However, hiPSC-derived ROs applications to IRD presently display limited maturation and functionality, with most photoreceptors lacking well-developed outer segments (OS) and light responsiveness comparable to their adult retinal counterparts. In this review, we address for the first time the microenvironment where OS mature, i.e., the subretinal space (SRS), and discuss SRS role in photoreceptors metabolic reprogramming required for OS generation. We also address bioengineering issues to improve culture systems proficiency to promote OS maturation in hiPSC-derived ROs. This issue is crucial, as satisfying the demanding metabolic needs of photoreceptors may unleash hiPSC-derived ROs full potential for disease modeling, drug development, and replacement therapies.


Asunto(s)
Bioingeniería/métodos , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Organoides/citología , Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina/citología , Animales , Humanos , Degeneración Retiniana/patología
13.
Cell Death Dis ; 11(8): 654, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811811

RESUMEN

Contractile myofiber units are mainly composed of thick myosin and thin actin (F-actin) filaments. F-Actin interacts with Microtubule Associated Monooxygenase, Calponin And LIM Domain Containing 2 (MICAL2). Indeed, MICAL2 modifies actin subunits and promotes actin filament turnover by severing them and preventing repolymerization. In this study, we found that MICAL2 increases during myogenic differentiation of adult and pluripotent stem cells (PSCs) towards skeletal, smooth and cardiac muscle cells and localizes in the nucleus of acute and chronic regenerating muscle fibers. In vivo delivery of Cas9-Mical2 guide RNA complexes results in muscle actin defects and demonstrates that MICAL2 is essential for skeletal muscle homeostasis and functionality. Conversely, MICAL2 upregulation shows a positive impact on skeletal and cardiac muscle commitments. Taken together these data demonstrate that modulations of MICAL2 have an impact on muscle filament dynamics and its fine-tuned balance is essential for the regeneration of muscle tissues.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Contracción Muscular/fisiología , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiología , Actinas/metabolismo , Actinas/fisiología , Animales , Diferenciación Celular/fisiología , Proteínas del Citoesqueleto/fisiología , Citoesqueleto/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Músculo Liso/fisiología , Miosinas/fisiología
14.
Int J Mol Sci ; 21(7)2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32231163

RESUMEN

Capillary endothelial cells are responsible for homeostatic responses to organismic and environmental stimulations. When malfunctioning, they may cause disease. Exposure to microgravity is known to have negative effects on astronauts' physiology, the endothelium being a particularly sensitive organ. Microgravity-related dysfunctions are striking similar to the consequences of sedentary life, bed rest, and ageing on Earth. Among different countermeasures implemented to minimize the effects of microgravity, a promising one is artificial gravity. We examined the effects of hypergravity on human microvascular endothelial cells of dermal capillary origin (HMEC-1) treated at 4 g for 15 min, and at 20 g for 15 min, 3 and 6 h. We evaluated cell morphology, gene expression and 2D motility and function. We found a profound rearrangement of the cytoskeleton network, dose-dependent increase of Focal Adhesion kinase (FAK) phosphorylation and Yes-associated protein 1 (YAP1) expression, suggesting cell stiffening and increased proneness to motility. Transcriptome analysis showed expression changes of genes associated with cardiovascular homeostasis, nitric oxide production, angiogenesis, and inflammation. Hypergravity-treated cells also showed significantly improved motility and function (2D migration and tube formation). These results, expanding our knowledge about the homeostatic response of capillary endothelial cells, show that adaptation to hypergravity has opposite effect compared to microgravity on the same cell type.


Asunto(s)
Capilares/citología , Células Endoteliales/citología , Hipergravedad , Neovascularización Fisiológica , Capilares/fisiología , Línea Celular , Movimiento Celular , Células Endoteliales/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Homeostasis , Humanos , Fosforilación
15.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2111-2124, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31004710

RESUMEN

The capacity of inducing angiogenesis is a recognized hallmark of cancer cells. The cancer microenvironment, characterized by hypoxia and inflammatory signals, promotes proliferation, migration and activation of quiescent endothelial cells (EC) from surrounding vascular network. Current anti-angiogenic drugs present side effects, temporary efficacy, and issues of primary resistance, thereby calling for the identification of new therapeutic targets. MICALs are a unique family of redox enzymes that destabilize F-actin in cytoskeletal dynamics. MICAL2 mediates Semaphorin3A-NRP2 response to VEGFR1 in rat ECs. MICAL2 also enters the p130Cas interactome in response to VEGF in HUVEC. Previously, we showed that MICAL2 is overexpressed in metastatic cancer. A small-molecule inhibitor of MICAL2 exists (CCG-1423). Here we report that 1) MICAL2 is expressed in neo-angiogenic ECs in human solid tumors (kidney and breast carcinoma, glioblastoma and cardiac myxoma, n = 67, were analyzed with immunohistochemistry) and in animal models of ischemia/inflammation neo-angiogenesis, but not in normal capillary bed; 2) MICAL2 protein pharmacological inhibition (CCG-1423) or gene KD reduce EC viability and functional performance; 3) MICAL2 KD disables ECs response to VEGF in vitro. Whole-genome gene expression profiling reveals MICAL2 involvement in angiogenesis and vascular development pathways. Based on these results, we propose that MICAL2 expression in ECs participates to inflammation-induced neo-angiogenesis and that MICAL2 inhibition should be tested in cancer- and noncancer-associated neo-angiogenesis, where chronic inflammation represents a relevant pathophysiological mechanism.


Asunto(s)
Movimiento Celular , Proteínas de Microfilamentos/metabolismo , Oxidorreductasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Anilidas/farmacología , Animales , Benzamidas/farmacología , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Expresión Génica , Humanos , Masculino , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/genética , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Neoplasias/irrigación sanguínea , Neoplasias/patología , Neovascularización Patológica , Neovascularización Fisiológica , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar
16.
Hum Mol Genet ; 27(5): 761-779, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29281027

RESUMEN

P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifically inactivate the P23H RHO mutant, while preserving the WT allele in vitro. We, then, translated this approach in vivo by delivering the CRISPR/Cas9 components in murine Rho+/P23H mutant retinae. Targeted retinae presented a high rate of cleavage in the P23H but not WT Rho allele. This gene manipulation was sufficient to slow photoreceptor degeneration and improve retinal functions. To improve the translational potential of our approach, we tested intravitreal delivery of this system by means of adeno-associated viruses (AAVs). To this purpose, the employment of the AAV9-PHP.B resulted the most effective in disrupting the P23H Rho mutant. Finally, this approach was translated successfully in human cells engineered with the homozygous P23H RHO gene mutation. Overall, this is a significant proof-of-concept that gene allele specific targeting by CRISPR/Cas9 technology is specific and efficient and represents an unprecedented tool for treating RP and more broadly dominant genetic human disorders affecting the eye, as well as other tissues.


Asunto(s)
Marcación de Gen/métodos , Vectores Genéticos , Retina/fisiología , Degeneración Retiniana/terapia , Rodopsina/genética , Alelos , Animales , Sistemas CRISPR-Cas , Electroporación/métodos , Fibroblastos , Terapia Genética/métodos , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Mutación , ARN Guía de Kinetoplastida , Retina/patología , Degeneración Retiniana/genética
17.
Front Physiol ; 8: 547, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824446

RESUMEN

Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF) imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts) pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning) to months (i.e., loss of bone density and muscle atrophy) of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.

19.
Clin Chim Acta ; 471: 68-75, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28501389

RESUMEN

The initial clinical manifestation of ischemic heart disease (IHD) i.e. unheralded myocardial infarction (MI) versus chronic angina pectoris (AP) is statistically associated with adverse or mild disease progression respectively in the long-term follow-up. Here, we subjected AP and MI patients to blood proteomic analysis by Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS) in order to investigate putative new prognostic biomarkers of IHD manifestation. We found several differentially expressed peaks but four of them (4176, 4475, 14,158m/z and 8922m/z for AP and MI, respectively) were most reliable. Two of them were identified; 14,158m/z peak was the double-charged form of Apolipoprotein A-I and its vasoprotective action accords with prominence in AP. The 4176m/z peak was related to FAM83C protein, while neither the 4475m/z peak nor the MI-linked 8922m/z peak could be identified. We conclude that SELDI-TOF-MS analysis may yield a panel of molecular signals able to retrospectively classify patients according to their clinical and molecular features, exploitable for predicting the natural course of IHD.


Asunto(s)
Angina Estable/diagnóstico , Angina Estable/metabolismo , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/metabolismo , Proteómica , Angina Estable/sangre , Biomarcadores/sangre , Proteínas Sanguíneas/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/sangre , Pronóstico
20.
Oncotarget ; 8(15): 25395-25417, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28445987

RESUMEN

Despite increasing amounts of experimental evidence depicting the involvement of non-coding RNAs in cancer, the study of BRAFV600E-regulated genes has thus far focused mainly on protein-coding ones. Here, we identify and study the microRNAs that BRAFV600E regulates through the ERK pathway.By performing small RNA sequencing on A375 melanoma cells and a vemurafenib-resistant clone that was taken as negative control, we discover miR-204 and miR-211 as the miRNAs most induced by vemurafenib. We also demonstrate that, although belonging to the same family, these two miRNAs have distinctive features. miR-204 is under the control of STAT3 and its expression is induced in amelanotic melanoma cells, where it acts as an effector of vemurafenib's anti-motility activity by targeting AP1S2. Conversely, miR-211, a known transcriptional target of MITF, is induced in melanotic melanoma cells, where it targets EDEM1 and consequently impairs the degradation of TYROSINASE (TYR) through the ER-associated degradation (ERAD) pathway. In doing so, miR-211 serves as an effector of vemurafenib's pro-pigmentation activity. We also show that such an increase in pigmentation in turn represents an adaptive response that needs to be overcome using appropriate inhibitors in order to increase the efficacy of vemurafenib.In summary, we unveil the distinct and context-dependent activities exerted by miR-204 family members in melanoma cells. Our work challenges the widely accepted "same miRNA family = same function" rule and provides a rationale for a novel treatment strategy for melanotic melanomas that is based on the combination of ERK pathway inhibitors with pigmentation inhibitors.


Asunto(s)
Melanoma Amelanótico/genética , Melanoma/genética , MicroARNs/genética , Neoplasias Cutáneas/genética , Subunidades sigma de Complejo de Proteína Adaptadora/genética , Subunidades sigma de Complejo de Proteína Adaptadora/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Indoles/farmacología , Sistema de Señalización de MAP Quinasas , Melanoma/metabolismo , Melanoma/patología , Melanoma Amelanótico/tratamiento farmacológico , Melanoma Amelanótico/metabolismo , Melanoma Amelanótico/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Sulfonamidas/farmacología , Transfección , Vemurafenib
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA