Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37693429

RESUMEN

Convergent extension (CE) is a fundamental morphogenetic process where oriented cell behaviors lead to polarized extension of diverse tissues. In vertebrates, regulation of CE requires both non-canonical Wnt, its co-receptor Ror, and "core members" of the planar cell polarity (PCP) pathway. PCP was originally identified as a mechanism to coordinate the cellular polarity in the plane of static epithelium, where core proteins Frizzled (Fz)/ Dishevelled (Dvl) and Van Gogh-like (Vangl)/ Prickel (Pk) partition to opposing cell cortex. But how core PCP proteins interact with each other to mediate non-canonical Wnt/ Ror signaling during CE is not clear. We found previously that during CE, Vangl cell-autonomously recruits Dvl to the plasma membrane but simultaneously keeps Dvl inactive. In this study, we show that non-canonical Wnt induces Dvl to transition from Vangl to Fz. PK inhibits the transition, and functionally synergize with Vangl to suppress Dvl during CE. Conversely, Ror is required for the transition, and functionally antagonizes Vangl. Biochemically, Vangl interacts directly with both Ror and Dvl. Ror and Dvl do not bind directly, but can be cofractionated with Vangl. We propose that Pk assists Vangl to function as an unconventional adaptor that brings Dvl and Ror into a complex to serves two functions: 1) simultaneously preventing both Dvl and Ror from ectopically activating non-canonical Wnt signaling; and 2) relaying Dvl to Fz for signaling activation upon non-canonical Wnt induced dimerization of Fz and Ror.

2.
Sci Rep ; 13(1): 13609, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604968

RESUMEN

Diverse cellular processes, including membrane traffic, lipid homeostasis, cytokinesis, mitochondrial positioning, and cell motility are critically dependent on the Sec7 domain guanine nucleotide exchange factor GBF1. Yet, how the participation of GBF1 in a particular cellular function is regulated is unknown. Here, we show that the phosphorylation of specific highly conserved serine and tyrosine residues within the N-terminal domain of GBF1 differentially regulates its function in maintaining Golgi homeostasis and facilitating secretion versus its role in cytokinesis. Specifically, GBF1 mutants containing single amino acid substitutions that mimic a stably phosphorylated S233, S371, Y377, and Y515 or the S233A mutant that can't be phosphorylated are fully able to maintain Golgi architecture and support cargo traffic through the secretory pathway when assessed in multiple functional assays. However, the same mutants cause multi-nucleation when expressed in cells, and appear to inhibit the progression through mitosis and the resolution of cytokinetic bridges. Thus, GBF1 participates in distinct interactive networks when mediating Golgi homeostasis and secretion versus facilitating cytokinesis, and GBF1 integration into such networks is differentially regulated by the phosphorylation of specific GBF1 residues.


Asunto(s)
Citocinesis , Aparato de Golgi , Fosforilación , Sustitución de Aminoácidos , Homeostasis
3.
Dev Biol ; 488: 120-130, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35644252

RESUMEN

We previously showed the importance of TGFß signaling in development of the mouse axial skeleton. Here, we provide the first direct evidence that TGFß signaling is required for resegmentation of the sclerotome using chick embryos. Lipophilic fluorescent tracers, DiO and DiD, were microinjected into adjacent somites of embryos treated with or without TGFßRI inhibitors, SB431542, SB525334 or SD208, at developmental day E2.5 (HH16). Lineage tracing of labeled cells was observed over the course of 4 days until the completion of resegmentation at E6.5 (HH32). Vertebrae were malformed and intervertebral discs were small and misshapen in inhibitor injected embryos. Hypaxial myofibers were also increased in thickness after treatment with the inhibitor. Inhibition of TGFß signaling resulted in alterations in resegmentation that ranged between full, partial, and slanted shifts in distribution of DiO or DiD labeled cells within vertebrae. Patterning of rostro-caudal markers within sclerotome was disrupted at E3.5 after treatment with TGFßRI inhibitor with rostral domains expressing both rostral and caudal markers. We propose that TGFß signaling regulates rostro-caudal polarity and subsequent resegmentation in sclerotome during spinal column development.


Asunto(s)
Pollos , Disco Intervertebral , Animales , Huesos , Embrión de Pollo , Somitos/fisiología , Columna Vertebral/fisiología , Factor de Crecimiento Transformador beta
4.
Clin Cancer Res ; 28(2): 327-337, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34615724

RESUMEN

PURPOSE: Hypoxia is a common characteristic of many tumor microenvironments, and it has been shown to promote suppression of antitumor immunity. Despite strong biological rationale, longitudinal correlation of hypoxia and response to immunotherapy has not been investigated. EXPERIMENTAL DESIGN: In this study, we probed the tumor and its surrounding microenvironment with 18F-FMISO PET imaging to noninvasively quantify tumor hypoxia in vivo prior to and during PD-1 and CTLA-4 checkpoint blockade in preclinical models of breast and colon cancer. RESULTS: Longitudinal imaging identified hypoxia as an early predictive biomarker of therapeutic response (prior to anatomic changes in tumor volume) with a decreasing standard uptake value (SUV) ratio in tumors that effectively respond to therapy. PET signal correlated with ex vivo markers of tumor immune response including cytokines (IFNγ, GZMB, and TNF), damage-associated molecular pattern receptors (TLR2/4), and immune cell populations (macrophages, dendritic cells, and cytotoxic T cells). Responding tumors were marked by increased inflammation that were spatially distinct from hypoxic regions, providing a mechanistic understanding of the immune signaling pathways activated. To exploit image-guided combination therapy, hypoxia signal from PET imaging was used to guide the addition of a hypoxia targeted treatment to nonresponsive tumors, which ultimately provided therapeutic synergy and rescued response as determined by longitudinal changes in tumor volume. CONCLUSIONS: The results generated from this work provide an immediately translatable paradigm for measuring and targeting hypoxia to increase response to immune checkpoint therapy and using hypoxia imaging to guide combinatory therapies.


Asunto(s)
Neoplasias , Receptor de Muerte Celular Programada 1 , Antígeno CTLA-4 , Hipoxia de la Célula , Humanos , Hipoxia , Misonidazol/análogos & derivados , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Nitroimidazoles , Mostazas de Fosforamida , Tomografía de Emisión de Positrones/métodos , Microambiente Tumoral
5.
Development ; 146(20)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31488563

RESUMEN

The second heart field (SHF) harbors progenitors that are important for heart formation, but little is known about its morphogenesis. We show that SHF population in the mouse splanchnic mesoderm (SpM-SHF) undergoes polarized morphogenesis to preferentially elongate anteroposteriorly. Loss of Wnt5, a putative ligand of the planar cell polarity (PCP) pathway, causes the SpM-SHF to expand isotropically. Temporal tracking reveals that the Wnt5a lineage is a unique subpopulation specified as early as E7.5, and undergoes bi-directional deployment to form specifically the pulmonary trunk and the dorsal mesenchymal protrusion (DMP). In Wnt5a-/- mutants, Wnt5a lineage fails to extend into the arterial and venous poles, leading to both outflow tract and atrial septation defects that can be rescued by an activated form of PCP effector Daam1. We identify oriented actomyosin cables in the medial SpM-SHF as a potential Wnt5a-mediated mechanism that promotes SpM-SHF lengthening and restricts its widening. Finally, the Wnt5a lineage also contributes to the pulmonary mesenchyme, suggesting that Wnt5a/PCP is a molecular circuit recruited by the recently identified cardiopulmonary progenitors to coordinate morphogenesis of the pulmonary airways and the cardiac septations necessary for pulmonary circulation.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Polaridad Celular/efectos de los fármacos , Morfogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína Wnt-5a/metabolismo , Animales , Femenino , Inmunohistoquímica , Masculino , Mesodermo/citología , Mesodermo/efectos de los fármacos , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Tamoxifeno/farmacología , Proteína Wnt-5a/genética , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...