Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(10): 704, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898636

RESUMEN

Skin cutaneous melanoma (SKCM) is the deadliest form of skin cancer due to its high heterogeneity that drives tumor aggressiveness. Melanoma plasticity consists of two distinct phenotypic states that co-exist in the tumor niche, the proliferative and the invasive, respectively associated with a high and low expression of MITF, the master regulator of melanocyte lineage. However, despite efforts, melanoma research is still far from exhaustively dissecting this phenomenon. Here, we discovered a key function of Transglutaminase Type-2 (TG2) in regulating melanogenesis by modulating MITF transcription factor expression and its transcriptional activity. Importantly, we demonstrated that TG2 expression affects melanoma invasiveness, highlighting its positive value in SKCM. These results suggest that TG2 may have implications in the regulation of the phenotype switching by promoting melanoma differentiation and impairing its metastatic potential. Our findings offer potential perspectives to unravel melanoma vulnerabilities via tuning intra-tumor heterogeneity.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Melanocitos/metabolismo , Fenotipo , Factor de Transcripción Asociado a Microftalmía/genética , Línea Celular Tumoral , Melanoma Cutáneo Maligno
2.
Antioxidants (Basel) ; 12(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36978819

RESUMEN

Potassium channels are often highly expressed in cancer cells with respect to healthy ones, as they provide proliferative advantages through modulating membrane potential, calcium homeostasis, and various signaling pathways. Among potassium channels, Shaker type voltage-gated Kv channels are emerging as promising pharmacological targets in oncology. Here, we queried publicly available cancer patient databases to highlight if a correlation exists between Kv channel expression and survival rate in five different cancer types. By multiple gene comparison analysis, we found a predominant expression of KCNA2, KCNA3, and KCNA5 with respect to the other KCNA genes in skin cutaneous melanoma (SKCM), uterine corpus endometrial carcinoma (UCEC), stomach adenocarcinoma (STAD), lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC). This analysis highlighted a prognostic role of KCNA3 and KCNA5 in SKCM, LUAD, LUSC, and STAD, respectively. Interestingly, KCNA3 was associated with a positive prognosis in SKCM and LUAD but not in LUSC. Results obtained by the analysis of KCNA3-related differentially expressed genes (DEGs); tumor immune cell infiltration highlighted differences that may account for such differential prognosis. A meta-analysis study was conducted to investigate the role of KCNA channels in cancer using cancer patients' datasets. Our study underlines a promising correlation between Kv channel expression in tumor cells, in infiltrating immune cells, and survival rate.

3.
Physiology (Bethesda) ; 38(1): 0, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998249

RESUMEN

Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Animales , Canales de Potasio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...