Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 836, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016986

RESUMEN

The Minamata Convention, a global and legally binding treaty that entered into force in 2017, aims to protect human health and the environment from harmful mercury (Hg) effects by reducing anthropogenic Hg emissions and environmental levels. The Conference of the Parties is to periodically evaluate the Convention's effectiveness, starting in 2023, using existing monitoring data and observed trends. Monitoring atmospheric Hg levels has been proposed as a key indicator. However, data gaps exist, especially in the Southern Hemisphere. Here, we present over a decade of atmospheric Hg monitoring data at Amsterdam Island (37.80°S, 77.55°E), in the remote southern Indian Ocean. Datasets include gaseous elemental and oxidised Hg species ambient air concentrations from either active/continuous or passive/discrete acquisition methods, and annual total Hg wet deposition fluxes. These datasets are made available to the community to support policy-making and further scientific advancements.

2.
Sci Data ; 10(1): 690, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821470

RESUMEN

The Arctic environment is transforming rapidly due to climate change. Aerosols' abundance and physicochemical characteristics play a crucial, yet uncertain, role in these changes due to their influence on the surface energy budget through direct interaction with solar radiation and indirectly via cloud formation. Importantly, Arctic aerosol properties are also changing in response to climate change. Despite their importance, year-round measurements of their characteristics are sparse in the Arctic and often confined to lower latitudes at Arctic land-based stations and/or short high-latitude summertime campaigns. Here, we present unique aerosol microphysics and chemical composition datasets collected during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, in the central Arctic. These datasets, which include aerosol particle number concentrations, size distributions, cloud condensation nuclei concentrations, fluorescent aerosol concentrations and properties, and aerosol bulk chemical composition (black carbon, sulfate, nitrate, ammonium, chloride, and organics) will serve to improve our understanding of high-Arctic aerosol processes, with relevance towards improved modelling of the future Arctic (and global) climate.

3.
Nat Commun ; 14(1): 4887, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580358

RESUMEN

Atmospheric gaseous elemental mercury (GEM) concentrations in the Arctic exhibit a clear summertime maximum, while the origin of this peak is still a matter of debate in the community. Based on summertime observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition and a modeling approach, we further investigate the sources of atmospheric Hg in the central Arctic. Simulations with a generalized additive model (GAM) show that long-range transport of anthropogenic and terrestrial Hg from lower latitudes is a minor contribution (~2%), and more than 50% of the explained GEM variability is caused by oceanic evasion. A potential source contribution function (PSCF) analysis further shows that oceanic evasion is not significant throughout the ice-covered central Arctic Ocean but mainly occurs in the Marginal Ice Zone (MIZ) due to the specific environmental conditions in that region. Our results suggest that this regional process could be the leading contributor to the observed summertime GEM maximum. In the context of rapid Arctic warming and the observed increase in width of the MIZ, oceanic Hg evasion may become more significant and strengthen the role of the central Arctic Ocean as a summertime source of atmospheric Hg.

4.
Ambio ; 52(5): 853-876, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36988895

RESUMEN

Past and present anthropogenic mercury (Hg) release to ecosystems causes neurotoxicity and cardiovascular disease in humans with an estimated economic cost of $117 billion USD annually. Humans are primarily exposed to Hg via the consumption of contaminated freshwater and marine fish. The UNEP Minamata Convention on Hg aims to curb Hg release to the environment and is accompanied by global Hg monitoring efforts to track its success. The biogeochemical Hg cycle is a complex cascade of release, dispersal, transformation and bio-uptake processes that link Hg sources to Hg exposure. Global change interacts with the Hg cycle by impacting the physical, biogeochemical and ecological factors that control these processes. In this review we examine how global change such as biome shifts, deforestation, permafrost thaw or ocean stratification will alter Hg cycling and exposure. Based on past declines in Hg release and environmental levels, we expect that future policy impacts should be distinguishable from global change effects at the regional and global scales.


Asunto(s)
Ecosistema , Mercurio , Animales , Humanos , Mercurio/toxicidad , Mercurio/análisis , Peces , Monitoreo del Ambiente
5.
Nat Commun ; 14(1): 1769, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997509

RESUMEN

Chlorine radicals are strong atmospheric oxidants known to play an important role in the depletion of surface ozone and the degradation of methane in the Arctic troposphere. Initial oxidation processes of chlorine produce chlorine oxides, and it has been speculated that the final oxidation steps lead to the formation of chloric (HClO3) and perchloric (HClO4) acids, although these two species have not been detected in the atmosphere. Here, we present atmospheric observations of gas-phase HClO3 and HClO4. Significant levels of HClO3 were observed during springtime at Greenland (Villum Research Station), Ny-Ålesund research station and over the central Arctic Ocean, on-board research vessel Polarstern during the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) campaign, with estimated concentrations up to 7 × 106 molecule cm-3. The increase in HClO3, concomitantly with that in HClO4, was linked to the increase in bromine levels. These observations indicated that bromine chemistry enhances the formation of OClO, which is subsequently oxidized into HClO3 and HClO4 by hydroxyl radicals. HClO3 and HClO4 are not photoactive and therefore their loss through heterogeneous uptake on aerosol and snow surfaces can function as a previously missing atmospheric sink for reactive chlorine, thereby reducing the chlorine-driven oxidation capacity in the Arctic boundary layer. Our study reveals additional chlorine species in the atmosphere, providing further insights into atmospheric chlorine cycling in the polar environment.

6.
Sci Data ; 9(1): 723, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434022

RESUMEN

Despite the key role of the Arctic in the global Earth system, year-round in-situ atmospheric composition observations within the Arctic are sparse and mostly rely on measurements at ground-based coastal stations. Measurements of a suite of in-situ trace gases were performed in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. These observations give a comprehensive picture of year-round near-surface atmospheric abundances of key greenhouse and trace gases, i.e., carbon dioxide, methane, nitrous oxide, ozone, carbon monoxide, dimethylsulfide, sulfur dioxide, elemental mercury, and selected volatile organic compounds (VOCs). Redundancy in certain measurements supported continuity and permitted cross-evaluation and validation of the data. This paper gives an overview of the trace gas measurements conducted during MOSAiC and highlights the high quality of the monitoring activities. In addition, in the case of redundant measurements, merged datasets are provided and recommended for further use by the scientific community.

7.
Nat Commun ; 13(1): 5290, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075920

RESUMEN

Frequency and intensity of warm and moist air-mass intrusions into the Arctic have increased over the past decades and have been related to sea ice melt. During our year-long expedition in the remote central Arctic Ocean, a record-breaking increase in temperature, moisture and downwelling-longwave radiation was observed in mid-April 2020, during an air-mass intrusion carrying air pollutants from northern Eurasia. The two-day intrusion, caused drastic changes in the aerosol size distribution, chemical composition and particle hygroscopicity. Here we show how the intrusion transformed the Arctic from a remote low-particle environment to an area comparable to a central-European urban setting. Additionally, the intrusion resulted in an explosive increase in cloud condensation nuclei, which can have direct effects on Arctic clouds' radiation, their precipitation patterns, and their lifetime. Thus, unless prompt actions to significantly reduce emissions in the source regions are taken, such intrusion events are expected to continue to affect the Arctic climate.

8.
Sci Total Environ ; 839: 156213, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35623517

RESUMEN

Global anthropogenic and legacy mercury (Hg) emissions are the main sources of Arctic Hg contamination, primarily transported there via the atmosphere. This review summarizes the state of knowledge of the global anthropogenic sources of Hg emissions, and examines recent changes and source attribution of Hg transport and deposition to the Arctic using models. Estimated global anthropogenic Hg emissions to the atmosphere for 2015 were ~2220 Mg, ~20% higher than 2010. Global anthropogenic, legacy and geogenic Hg emissions were, respectively, responsible for 32%, 64% (wildfires: 6-10%) and 4% of the annual Arctic Hg deposition. Relative contributions to Arctic deposition of anthropogenic origin was dominated by sources in East Asia (32%), Commonwealth of Independent States (12%), and Africa (12%). Model results exhibit significant spatiotemporal variations in Arctic anthropogenic Hg deposition fluxes, driven by regional differences in Hg air transport routes, surface and precipitation uptake rates, and inter-seasonal differences in atmospheric circulation and deposition pathways. Model simulations reveal that changes in meteorology are having a profound impact on contemporary atmospheric Hg in the Arctic. Reversal of North Atlantic Oscillation phase from strongly negative in 2010 to positive in 2015, associated with lower temperature and more sea ice in the Canadian Arctic, Greenland and surrounding ocean, resulted in enhanced production of bromine species and Hg(0) oxidation and lower evasion of Hg(0) from ocean waters in 2015. This led to increased Hg(II) (and its deposition) and reduced Hg(0) air concentrations in these regions in line with High Arctic observations. However, combined changes in meteorology and anthropogenic emissions led to overall elevated modeled Arctic air Hg(0) levels in 2015 compared to 2010 contrary to observed declines at most monitoring sites, likely due to uncertainties in anthropogenic emission speciation, wildfire emissions and model representations of air-surface Hg fluxes.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Contaminantes Atmosféricos/análisis , Regiones Árticas , Canadá , Monitoreo del Ambiente/métodos , Mercurio/análisis
9.
Sci Total Environ ; 836: 155477, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35472347

RESUMEN

Arctic mercury (Hg) concentrations respond to changes in anthropogenic Hg emissions and environmental change. This manuscript, prepared for the 2021 Arctic Monitoring and Assessment Programme Mercury Assessment, explores the response of Arctic Ocean Hg concentrations to changing primary Hg emissions and to changing sea-ice cover, river inputs, and net primary production. To do this, we conduct a model analysis using a 2015 Hg inventory and future anthropogenic Hg emission scenarios. We model future atmospheric Hg deposition to the surface ocean as a flux to the surface water or sea ice using three scenarios: No Action, New Policy (NP), and Maximum Feasible Reduction (MFR). We then force a five-compartment box model of Hg cycling in the Arctic Ocean with these scenarios and literature-derived climate variables to simulate environmental change. No Action results in a 51% higher Hg deposition rate by 2050 while increasing Hg concentrations in the surface water by 22% and <9% at depth. Both "action" scenarios (NP and MFR), implemented in 2020 or 2035, result in lower Hg deposition ranging from 7% (NP delayed to 2035) to 30% (MFR implemented in 2020) by 2050. Under this last scenario, ocean Hg concentrations decline by 14% in the surface and 4% at depth. We find that the sea-ice cover decline exerts the strongest Hg reducing forcing on the Arctic Ocean while increasing river discharge increases Hg concentrations. When modified together the climate scenarios result in a ≤5% Hg decline by 2050 in the Arctic Ocean. Thus, we show that the magnitude of emissions-induced future changes in the Arctic Ocean is likely to be substantial compared to climate-induced effects. Furthermore, this study underscores the need for prompt and ambitious action for changing Hg concentrations in the Arctic, since delaying less ambitious reduction measures-like NP-until 2035 may become offset by Hg accumulated from pre-2035 emissions.


Asunto(s)
Mercurio , Regiones Árticas , Atmósfera , Monitoreo del Ambiente/métodos , Mercurio/análisis , Océanos y Mares , Agua/análisis
10.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34983875

RESUMEN

Pacific Ocean tuna is among the most-consumed seafood products but contains relatively high levels of the neurotoxin methylmercury. Limited observations suggest tuna mercury levels vary in space and time, yet the drivers are not well understood. Here, we map mercury concentrations in skipjack tuna across the Pacific Ocean and build generalized additive models to quantify the anthropogenic, ecological, and biogeochemical drivers. Skipjack mercury levels display a fivefold spatial gradient, with maximum concentrations in the northwest near Asia, intermediate values in the east, and the lowest levels in the west, southwest, and central Pacific. Large spatial differences can be explained by the depth of the seawater methylmercury peak near low-oxygen zones, leading to enhanced tuna mercury concentrations in regions where oxygen depletion is shallow. Despite this natural biogeochemical control, the mercury hotspot in tuna caught near Asia is explained by elevated atmospheric mercury concentrations and/or mercury river inputs to the coastal shelf. While we cannot ignore the legacy mercury contribution from other regions to the Pacific Ocean (e.g., North America and Europe), our results suggest that recent anthropogenic mercury release, which is currently largest in Asia, contributes directly to present-day human mercury exposure.


Asunto(s)
Mercurio/análisis , Compuestos de Metilmercurio/análisis , Atún , Animales , Asia , Ecología , Monitoreo del Ambiente/métodos , Europa (Continente) , Cadena Alimentaria , Sedimentos Geológicos/química , Humanos , Metilación , Modelos Teóricos , América del Norte , Océano Pacífico , Alimentos Marinos , Agua de Mar , Contaminantes del Agua , Contaminantes Químicos del Agua/análisis
11.
Atmos Chem Phys ; 22(21): 14037-14058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37476609

RESUMEN

The Arctic is a climatically sensitive region that has experienced warming at almost 3 times the global average rate in recent decades, leading to an increase in Arctic greenness and a greater abundance of plants that emit biogenic volatile organic compounds (BVOCs). These changes in atmospheric emissions are expected to significantly modify the overall oxidative chemistry of the region and lead to changes in VOC composition and abundance, with implications for atmospheric processes. Nonetheless, observations needed to constrain our current understanding of these issues in this critical environment are sparse. This work presents novel atmospheric in situ proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) measurements of VOCs at Toolik Field Station (TFS; 68°38' N, 149°36' W), in the Alaskan Arctic tundra during May-June 2019. We employ a custom nested grid version of the GEOS-Chem chemical transport model (CTM), driven with MEGANv2.1 (Model of Emissions of Gases and Aerosols from Nature version 2.1) biogenic emissions for Alaska at 0.25° × 0.3125° resolution, to interpret the observations in terms of their constraints on BVOC emissions, total reactive organic carbon (ROC) composition, and calculated OH reactivity (OHr) in this environment. We find total ambient mole fraction of 78 identified VOCs to be 6.3 ± 0.4 ppbv (10.8 ± 0.5 ppbC), with overwhelming (> 80 %) contributions are from short-chain oxygenated VOCs (OVOCs) including methanol, acetone and formaldehyde. Isoprene was the most abundant terpene identified. GEOS-Chem captures the observed isoprene (and its oxidation products), acetone and acetaldehyde abundances within the combined model and observation uncertainties (±25 %), but underestimates other OVOCs including methanol, formaldehyde, formic acid and acetic acid by a factor of 3 to 12. The negative model bias for methanol is attributed to underestimated biogenic methanol emissions for the Alaskan tundra in MEGANv2.1. Observed formaldehyde mole fractions increase exponentially with air temperature, likely reflecting its biogenic precursors and pointing to a systematic model underprediction of its secondary production. The median campaign-calculated OHr from VOCs measured at TFS was 0.7 s-1, roughly 5 % of the values typically reported in lower-latitude forested ecosystems. Ten species account for over 80 % of the calculated VOC OHr, with formaldehyde, isoprene and acetaldehyde together accounting for nearly half of the total. Simulated OHr based on median-modeled VOCs included in GEOS-Chem averages 0.5 s-1 and is dominated by isoprene (30 %) and monoterpenes (17 %). The data presented here serve as a critical evaluation of our knowledge of BVOCs and ROC budgets in high-latitude environments and represent a foundation for investigating and interpreting future warming-driven changes in VOC emissions in the Alaskan Arctic tundra.

12.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34930838

RESUMEN

Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors. Here, we report global-scale, in situ airborne measurements of ozone and precursor source tracers from the NASA Atmospheric Tomography mission. Measurements from the remote troposphere showed that tropospheric ozone is regularly enhanced above background in polluted air masses in all regions of the globe. Ozone enhancements in air with high BB and urban emission tracers (2.1 to 23.8 ppbv [parts per billion by volume]) were generally similar to those in BB-influenced air (2.2 to 21.0 ppbv) but larger than those in urban-influenced air (-7.7 to 6.9 ppbv). Ozone attributed to BB was 2 to 10 times higher than that from urban sources in the Southern Hemisphere and the tropical Atlantic and roughly equal to that from urban sources in the Northern Hemisphere and the tropical Pacific. Three independent global chemical transport models systematically underpredict the observed influence of BB on tropospheric ozone. Potential reasons include uncertainties in modeled BB injection heights and emission inventories, export efficiency of BB emissions to the free troposphere, and chemical mechanisms of ozone production in smoke. Accurately accounting for intermittent but large and widespread BB emissions is required to understand the global tropospheric ozone burden.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Biomasa , Ozono , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Atmósfera , Ecosistema , Incendios , Ozono/análisis , Ozono/química
13.
Environ Sci Process Impacts ; 23(12): 1914-1929, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34739015

RESUMEN

Mercury (Hg) is an environmental toxicant dangerous to human health and the environment. Its anthropogenic emissions are regulated by global, regional, and local policies. Here, we investigate Hg sources in the coastal city of Boston, the third largest metropolitan area in the Northeastern United States. With a median of 1.37 ng m-3, atmospheric Hg concentrations measured from August 2017 to April 2019 were at the low end of the range reported in the Northern Hemisphere and in the range reported at North American rural sites. Despite relatively low ambient Hg concentrations, we estimate anthropogenic emissions to be 3-7 times higher than in current emission inventories using a measurement-model framework, suggesting an underestimation of small point and/or nonpoint emissions. We also test the hypothesis that a legacy Hg source from the ocean contributes to atmospheric Hg concentrations in the study area; legacy emissions (recycling of previously deposited Hg) account for ∼60% of Hg emitted annually worldwide (and much of this recycling takes place through the oceans). We find that elevated concentrations observed during easterly oceanic winds can be fully explained by low wind speeds and recirculating air allowing for accumulation of land-based emissions. This study suggests that the influence of nonpoint land-based emissions may be comparable in size to point sources in some regions and highlights the benefits of further top-down studies in other areas.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Contaminantes Atmosféricos/análisis , Boston , Monitoreo del Ambiente , Humanos , Massachusetts , Mercurio/análisis , Océanos y Mares
14.
Environ Sci Technol ; 54(18): 11344-11355, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32822538

RESUMEN

Mercury (Hg) is a globally spread trace metal due to its long atmospheric residence time. Yet, our understanding of atmospheric processes (e.g., redox reactions and deposition) driving Hg cycling is still limited, especially in polar regions. The Antarctic continent, by virtue of its remoteness, is the perfect location to investigate Hg atmospheric processes in the absence of significant local anthropogenic impact. Here, we present the first 2 year record (2016-2017) of total suspended particulate mercury (PHg) concentrations along with a year-round determination of an Hg stable isotopic composition in particles collected at Zhongshan Station (ZSS), eastern Antarctic coast. The mean PHg concentration is 21.8 ± 32.1 pg/m3, ranging from 0.9 to 195.6 pg/m3, and peaks in spring and summer. The negative mass-independent fractionation of odd Hg isotopes (odd-MIF, average -0.38 ± 0.12‰ for Δ199Hg) and the slope of Δ199Hg/Δ201Hg with 0.91 ± 0.12 suggest that the springtime isotope variation of PHg is likely caused by in situ photo-oxidation and reduction reactions. On the other hand, the increase of PHg concentrations and the observed odd-MIF values in summer are attributed to the transport by katabatic winds of divalent species derived from the oxidation of elemental Hg in the inland Antarctic Plateau.


Asunto(s)
Mercurio , Regiones Antárticas , Monitoreo del Ambiente , Isótopos , Mercurio/análisis , Isótopos de Mercurio/análisis , Estaciones del Año
15.
J Environ Manage ; 255: 109886, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32063323

RESUMEN

The Rhône River (France) has been used for energy production for decades and 21 dams have been built. To avoid problems due to sediment storage, dam flushing operations are periodically organized. The impacts of such operations on suspended particulate matter (SPM) dynamics (resuspension and fluxes) and quality (physico-chemical characteristics and contamination), were investigated during a flushing operation performed in June 2012 on 3 major dams from the Upper Rhône River. The concentrations of major hydrophobic organic contaminants (polychlorinated biphenyls, polycyclic aromatic hydrocarbons - PAHs, bis(2-ethylhexyl)phthalate [DEHP] and 4-n-nonylphenol), trace metal elements, particulate organic carbon (POC) and particle size distribution were measured on SPM samples collected during this event as well as on those obtained from 2011 to 2016 at a permanent monitoring station (150 km downstream). This allows to compare the SPM and contaminant concentrations and fluxes during the 2012 dam flushing operations with those during flood events and baseflow regime. At equal water discharge, mean SPM concentrations during flushing were on average 6-8 times higher than during flood events recorded from 2011 to 2016. While of short duration (19 days), the flushing operations led to the resuspension of SPM and contributed to a third of the mean annual SPM flux. The SPM contamination was generally lower during flushing than during baseflow or flood, probably due to the fact that flushing transports SPM only issued from resuspended sediment, with no autochtonous particles nor eroded soil. The only exception are PAHs and DEHP with higher concentrations during flushing, which must be issued from the resuspension of legacy-contaminated sediments stored behind the dams before the implementation of emission regulations. During flushing, the variations of POC and contaminant concentrations are also mostly driven by particle size. Finally, we propose a list of recommendations for the design of an adequate monitoring network to evaluate the impact of dam flushing operations on large river systems.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Francia , Sedimentos Geológicos , Ríos
16.
Environ Sci Technol ; 54(3): 1326-1335, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31899622

RESUMEN

National commitments under the Paris Agreement on climate change interact with other global environmental objectives, such as those of the Minamata Convention on Mercury. We assess how mercury emissions and deposition reductions from national climate policy in China under the Paris Agreement could contribute to the country's commitments under the Minamata Convention. We examine emissions under climate policy scenarios developed using a computable general equilibrium model of China's economy, end-of-pipe control scenarios that meet China's commitments under the Minamata Convention, and these policies in combination, and evaluate deposition using a global atmospheric transport model. We find climate policy in China can provide mercury benefits when implemented with Minamata policy, achieving in the year 2030 approximately 5% additional reduction in mercury emissions and deposition in China when climate policy achieves a 5% reduction per year in carbon intensity (CO2 emissions 9.7 Gt in 2030). This corresponds to 63 Mg additional mercury emissions reductions in 2030 when implemented with Minamata Convention policy, compared to Minamata policy implemented alone. Climate policy provides emissions reductions in sectors not considered under the Minamata Convention, such as residential combustion. This changes the combination of sectors that contribute to emissions reductions.


Asunto(s)
Mercurio , China , Cambio Climático , Políticas
17.
Biogeosciences ; 17(23): 6219-6236, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35222652

RESUMEN

Rapid Arctic warming, a lengthening growing season, and the increasing abundance of biogenic volatile-organic-compound-emitting shrubs are all anticipated to increase atmospheric biogenic volatile organic compounds (BVOCs) in the Arctic atmosphere, with implications for atmospheric oxidation processes and climate feedbacks. Quantifying these changes requires an accurate understanding of the underlying processes driving BVOC emissions in the Arctic. While boreal ecosystems have been widely studied, little attention has been paid to Arctic tundra environments. Here, we report terpenoid (isoprene, monoterpenes, and sesquiterpenes) ambient mixing ratios and emission rates from key dominant vegetation species at Toolik Field Station (TFS; 68°38' N, 149°36' W) in northern Alaska during two back-to-back field campaigns (summers of 2018 and 2019) covering the entire growing season. Isoprene ambient mixing ratios observed at TFS fell within the range of values reported in the Eurasian taiga (0-500 parts per trillion by volume - pptv), while monoterpene and sesquiterpene ambient mixing ratios were respectively close to and below the instrumental quantification limit (~ 2 pptv). Isoprene surface emission rates ranged from 0.2 to 2250 µgC m-2 h-1 (mean of 85 µgC m-2 h-1) and monoterpene emission rates remained, on average, below 1 µgC m-2 h-1 over the course of the study. We further quantified the temperature dependence of isoprene emissions from local vegetation, including Salix spp. (a known isoprene emitter), and compared the results to predictions from the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1). Our observations suggest a 180 %-215 % emission increase in response to a 3-4°C warming, and the MEGAN2.1 temperature algorithm exhibits a close fit with observations for enclosure temperatures in the 0-30°C range. The data presented here provide a baseline for investigating future changes in the BVOC emission potential of the under-studied Arctic tundra environment.

18.
Environ Sci Technol ; 52(22): 12968-12977, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30376303

RESUMEN

Mercury (Hg) is emitted to air by natural and anthropogenic sources, transports and deposits globally, and bioaccumulates to toxic levels in food webs. It is addressed under the global 2017 Minamata Convention, for which periodic effectiveness evaluation is required. Previous analyses have estimated the impact of different regulatory strategies for future mercury deposition. However, analyses using atmospheric models traditionally hold legacy emissions (recycling of previously deposited Hg) constant, and do not account for their possible future growth. Here, using an integrated modeling approach, we investigate how delays in implementing emissions reductions and the associated growing legacy reservoir affect deposition fluxes to ecosystems in different global regions. Assuming nearly constant yearly emissions relative to 2010, each 5-year delay in peak emissions defers by additional extra ca. 4 years the return to year 2010 global deposition. On a global average, each 5-year delay leads to a 14% decrease in policy impacts on local-scale Hg deposition. We also investigate the response of fish contamination in remote lakes to delayed action. We quantify the consequences of delay for limiting the Hg burden of future generations and show that traditional analyses of policy impacts provide best-case estimates.


Asunto(s)
Mercurio , Animales , Ecosistema , Monitoreo del Ambiente , Peces , Lagos
19.
Environ Sci Technol ; 52(10): 5561-5570, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29673249

RESUMEN

Nitrogen is an essential nutrient for life on Earth, but in excess, it can lead to environmental issues (e.g., N saturation, loss of biodiversity, acidification of lakes, etc.). Understanding the nitrogen budget (i.e., inputs and outputs) is essential to evaluate the prospective decay of the ecosystem services (e.g., freshwater quality, erosion control, loss of high patrimonial-value plant species, etc.) that subalpine headwater catchments provide, especially as these ecosystems experience high atmospheric nitrogen deposition. Here, we use a multi-isotopic tracer (Δ17O, δ15N and δ18O) of nitrate in aerosols, snow, and streams to assess the fate of atmospherically deposited nitrate in the subalpine watershed of the Lautaret Pass (French Alps). We show that atmospheric N deposition contributes significantly to stream nitrate pool year-round, either by direct inputs (up to 35%) or by in situ nitrification of atmospheric ammonium (up to 35%). Snowmelt in particular leads to high exports of atmospheric nitrate, most likely fast enough to impede assimilation by surrounding ecosystems. Yet, in a context of climate change, with shorter snow seasons, and increasing nitrogen emissions, our results hint at possibly stronger ecological consequences of nitrogen atmospheric deposition in the close future.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Nitratos , Nitrógeno , Estudios Prospectivos , Ríos
20.
Chemosphere ; 197: 306-317, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29353680

RESUMEN

The Antarctic Plateau snowpack is an important environment for the mercury geochemical cycle. We have extensively characterized and compared the changes in surface snow and atmospheric mercury concentrations that occur at Dome C. Three summer sampling campaigns were conducted between 2013 and 2016. The three campaigns had different meteorological conditions that significantly affected mercury deposition processes and its abundance in surface snow. In the absence of snow deposition events, the surface mercury concentration remained stable with narrow oscillations, while an increase in precipitation results in a higher mercury variability. The Hg concentrations detected confirm that snowfall can act as a mercury atmospheric scavenger. A high temporal resolution sampling experiment showed that surface concentration changes are connected with the diurnal solar radiation cycle. Mercury in surface snow is highly dynamic and it could decrease by up to 90% within 4/6 h. A negative relationship between surface snow mercury and atmospheric concentrations has been detected suggesting a mutual dynamic exchange between these two environments. Mercury concentrations were also compared with the Br concentrations in surface and deeper snow, results suggest that Br could have an active role in Hg deposition, particularly when air masses are from coastal areas. This research presents new information on the presence of Hg in surface and deeper snow layers, improving our understanding of atmospheric Hg deposition to the snow surface and the possible role of re-emission on the atmospheric Hg concentration.


Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/química , Mercurio/análisis , Nieve/química , Regiones Antárticas , Monitoreo del Ambiente , Aguas Salinas/química , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA