Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Alzheimers Dement ; 16(2): 251-261, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31668966

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is linked to neuronal calcium dyshomeostasis, which is associated with network hyperexcitability. Decreased expression of the calcium-binding protein cal- bindin-D28K (CB) might be a susceptibility factor for AD. The subiculum is affected early in AD, for unknown reasons. METHODS: In AD, CB knock-out and control mice fluorescence Ca2+ imaging combined with patch clamp were used to characterize Ca2+ dynamics, resting Ca2+ , and Ca2+ -buffering capacity in subicular neurons. CB expression levels in wild-type and AD mice were also analyzed. RESULTS: The subiculum and dentate gyrus of wild-type mice showed age-related decline in CB expression not observed in AD mice. Resting Ca2+ and Ca2+ -buffering capacity was increased in aged AD mice subicular dendrites. Modeling suggests that AD calcium changes can be explained by alterations of Ca2+ extrusion pumps rather than by buffers. DISCUSSION: Overall, abnormal Ca2+ homeostasis in AD has an age dependency that comprises multiple mechanisms, including compensatory processes.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Calcio/metabolismo , Dendritas , Hipocampo/metabolismo , Homeostasis/fisiología , Factores de Edad , Envejecimiento , Enfermedad de Alzheimer/patología , Animales , Giro Dentado , Electrofisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo
3.
Rev Neurosci ; 29(1): 21-38, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28949931

RESUMEN

In this review, we discuss the genetic etiologies of Alzheimer's disease (AD). Furthermore, we review genetic links to protein signaling pathways as novel pharmacological targets to treat AD. Moreover, we also discuss the clumps of AD-m ediated genes according to their single nucleotide polymorphism mutations. Rigorous data mining approaches justified the significant role of genes in AD prevalence. Pedigree analysis and twin studies suggest that genetic components are part of the etiology, rather than only being risk factors for AD. The first autosomal dominant mutation in the amyloid precursor protein (APP) gene was described in 1991. Later, AD was also associated with mutated early-onset (presenilin 1/2, PSEN1/2 and APP) and late-onset (apolipoprotein E, ApoE) genes. Genome-wide association and linkage analysis studies with identified multiple genomic areas have implications for the treatment of AD. We conclude this review with future directions and clinical implications of genetic research in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Presenilina-1/genética , Estudio de Asociación del Genoma Completo , Humanos
4.
Nat Commun ; 8(1): 1464, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29133888

RESUMEN

The ε4 allele of apolipoprotein E (APOE) is the dominant genetic risk factor for late-onset Alzheimer's disease (AD). However, the reason APOE4 is associated with increased AD risk remains a source of debate. Neuronal hyperactivity is an early phenotype in both AD mouse models and in human AD, which may play a direct role in the pathogenesis of the disease. Here, we have identified an APOE4-associated hyperactivity phenotype in the brains of aged APOE mice using four complimentary techniques-fMRI, in vitro electrophysiology, in vivo electrophysiology, and metabolomics-with the most prominent hyperactivity occurring in the entorhinal cortex. Further analysis revealed that this neuronal hyperactivity is driven by decreased background inhibition caused by reduced responsiveness of excitatory neurons to GABAergic inhibitory inputs. Given the observations of neuronal hyperactivity in prodromal AD, we propose that this APOE4-driven hyperactivity may be a causative factor driving increased risk of AD among APOE4 carriers.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Corteza Entorrinal/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Envejecimiento , Animales , Apolipoproteína E3/genética , Ondas Encefálicas/fisiología , Metabolismo Energético/genética , Ácidos Grasos/biosíntesis , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...