Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 16(813): eadg1913, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015911

RESUMEN

Phosphoinositide 3-kinases (PI3Ks) phosphorylate intracellular inositol lipids to regulate signaling and intracellular vesicular trafficking. Mammals have eight PI3K isoforms, of which class I PI3Kα and class II PI3K-C2α are essential for vascular development. The class II PI3K-C2ß is also abundant in endothelial cells. Using in vivo and in vitro approaches, we found that PI3K-C2ß was a critical regulator of blood vessel growth by restricting endothelial mTORC1 signaling. Mice expressing a kinase-inactive form of PI3K-C2ß displayed enlarged blood vessels without corresponding changes in endothelial cell proliferation or migration. Instead, inactivation of PI3K-C2ß resulted in an increase in the size of endothelial cells, particularly in the sprouting zone of angiogenesis. Mechanistically, we showed that the aberrantly large size of PI3K-C2ß mutant endothelial cells was caused by mTORC1 activation, which sustained growth in these cells. Consistently, pharmacological inhibition of mTORC1 with rapamycin normalized vascular morphogenesis in PI3K-C2ß mutant mice. Together, these results identify PI3K-C2ß as a crucial determinant of endothelial signaling and illustrate the importance of mTORC1 regulation during angiogenic growth.


Asunto(s)
Células Endoteliales , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Proliferación Celular , Células Endoteliales/metabolismo , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Isoformas de Proteínas , Transducción de Señal
2.
EMBO Mol Med ; 14(7): e15619, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35695059

RESUMEN

Low-flow vascular malformations are congenital overgrowths composed of abnormal blood vessels potentially causing pain, bleeding and obstruction of different organs. These diseases are caused by oncogenic mutations in the endothelium, which result in overactivation of the PI3K/AKT pathway. Lack of robust in vivo preclinical data has prevented the development and translation into clinical trials of specific molecular therapies for these diseases. Here, we demonstrate that the Pik3caH1047R activating mutation in endothelial cells triggers a transcriptome rewiring that leads to enhanced cell proliferation. We describe a new reproducible preclinical in vivo model of PI3K-driven vascular malformations using the postnatal mouse retina. We show that active angiogenesis is required for the pathogenesis of vascular malformations caused by activating Pik3ca mutations. Using this model, we demonstrate that the AKT inhibitor miransertib both prevents and induces the regression of PI3K-driven vascular malformations. We confirmed the efficacy of miransertib in isolated human endothelial cells with genotypes spanning most of human low-flow vascular malformations.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Malformaciones Vasculares , Aminopiridinas , Animales , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Células Endoteliales/metabolismo , Imidazoles , Ratones , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Malformaciones Vasculares/genética , Malformaciones Vasculares/metabolismo , Malformaciones Vasculares/patología
3.
Nat Commun ; 12(1): 2610, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972531

RESUMEN

Angiogenic sprouting relies on collective migration and coordinated rearrangements of endothelial leader and follower cells. VE-cadherin-based adherens junctions have emerged as key cell-cell contacts that transmit forces between cells and trigger signals during collective cell migration in angiogenesis. However, the underlying molecular mechanisms that govern these processes and their functional importance for vascular development still remain unknown. We previously showed that the F-BAR protein PACSIN2 is recruited to tensile asymmetric adherens junctions between leader and follower cells. Here we report that PACSIN2 mediates the formation of endothelial sprouts during angiogenesis by coordinating collective migration. We show that PACSIN2 recruits the trafficking regulators EHD4 and MICAL-L1 to the rear end of asymmetric adherens junctions to form a recycling endosome-like tubular structure. The junctional PACSIN2/EHD4/MICAL-L1 complex controls local VE-cadherin trafficking and thereby coordinates polarized endothelial migration and angiogenesis. Our findings reveal a molecular event at force-dependent asymmetric adherens junctions that occurs during the tug-of-war between endothelial leader and follower cells, and allows for junction-based guidance during collective migration in angiogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas de Microfilamentos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Neovascularización Patológica/metabolismo , Proteínas Nucleares/metabolismo , Uniones Adherentes/genética , Uniones Adherentes/metabolismo , Animales , Cateninas/metabolismo , Movimiento Celular/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/genética , Transducción de Señal/genética , Esferoides Celulares/metabolismo
4.
Biochim Biophys Acta Biomembr ; 1862(9): 183316, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32360073

RESUMEN

Epithelial and endothelial monolayers are multicellular sheets that form barriers between the 'outside' and 'inside' of tissues. Cell-cell junctions, made by adherens junctions, tight junctions and desmosomes, hold together these monolayers. They form intercellular contacts by binding their receptor counterparts on neighboring cells and anchoring these structures intracellularly to the cytoskeleton. During tissue development, maintenance and pathogenesis, monolayers encounter a range of mechanical forces from the cells themselves and from external systemic forces, such as blood pressure or tissue stiffness. The molecular landscape of cell-cell junctions is diverse, containing transmembrane proteins that form intercellular bonds and a variety of cytoplasmic proteins that remodel the junctional connection to the cytoskeleton. Many junction-associated proteins participate in mechanotransduction cascades to confer mechanical cues into cellular responses that allow monolayers to maintain their structural integrity. We will discuss force-dependent junctional molecular events and their role in cell-cell contact organization and remodeling.


Asunto(s)
Uniones Adherentes/química , Uniones Intercelulares/química , Fenómenos Mecánicos , Proteínas de la Membrana/química , Uniones Adherentes/genética , Presión Sanguínea/genética , Citoesqueleto/química , Desmosomas/química , Desmosomas/genética , Células Endoteliales/química , Células Epiteliales/química , Humanos , Uniones Intercelulares/genética , Proteínas de la Membrana/genética , Uniones Estrechas/química , Uniones Estrechas/genética
5.
Circulation ; 142(7): 688-704, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32466671

RESUMEN

BACKGROUND: Pericytes regulate vessel stabilization and function, and their loss is associated with diseases such as diabetic retinopathy or cancer. Despite their physiological importance, pericyte function and molecular regulation during angiogenesis remain poorly understood. METHODS: To decipher the transcriptomic programs of pericytes during angiogenesis, we crossed Pdgfrb(BAC)-CreERT2 mice into RiboTagflox/flox mice. Pericyte morphological changes were assessed in mural cell-specific R26-mTmG reporter mice, in which low doses of tamoxifen allowed labeling of single-cell pericytes at high resolution. To study the role of phosphoinositide 3-kinase (PI3K) signaling in pericyte biology during angiogenesis, we used genetic mouse models that allow selective inactivation of PI3Kα and PI3Kß isoforms and their negative regulator phosphate and tensin homolog deleted on chromosome 10 (PTEN) in mural cells. RESULTS: At the onset of angiogenesis, pericytes exhibit molecular traits of cell proliferation and activated PI3K signaling, whereas during vascular remodeling, pericytes upregulate genes involved in mature pericyte cell function, together with a remarkable decrease in PI3K signaling. Immature pericytes showed stellate shape and high proliferation, and mature pericytes were quiescent and elongated. Unexpectedly, we demonstrate that PI3Kß, but not PI3Kα, regulates pericyte proliferation and maturation during vessel formation. Genetic PI3Kß inactivation in pericytes triggered early pericyte maturation. Conversely, unleashing PI3K signaling by means of PTEN deletion delayed pericyte maturation. Pericyte maturation was necessary to undergo vessel remodeling during angiogenesis. CONCLUSIONS: Our results identify new molecular and morphological traits associated with pericyte maturation and uncover PI3Kß activity as a checkpoint to ensure appropriate vessel formation. In turn, our results may open new therapeutic opportunities to regulate angiogenesis in pathological processes through the manipulation of pericyte PI3Kß activity.


Asunto(s)
Neovascularización Fisiológica , Pericitos/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Remodelación Vascular , Animales , Ratones , Ratones Transgénicos , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética
6.
Nat Commun ; 9(1): 4826, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446640

RESUMEN

Angiogenesis is a dynamic process relying on endothelial cell rearrangements within vascular tubes, yet the underlying mechanisms and functional relevance are poorly understood. Here we show that PI3Kα regulates endothelial cell rearrangements using a combination of a PI3Kα-selective inhibitor and endothelial-specific genetic deletion to abrogate PI3Kα activity during vessel development. Quantitative phosphoproteomics together with detailed cell biology analyses in vivo and in vitro reveal that PI3K signalling prevents NUAK1-dependent phosphorylation of the myosin phosphatase targeting-1 (MYPT1) protein, thereby allowing myosin light chain phosphatase (MLCP) activity and ultimately downregulating actomyosin contractility. Decreased PI3K activity enhances actomyosin contractility and impairs junctional remodelling and stabilization. This leads to overstretched endothelial cells that fail to anastomose properly and form aberrant superimposed layers within the vasculature. Our findings define the PI3K/NUAK1/MYPT1/MLCP axis as a critical pathway to regulate actomyosin contractility in endothelial cells, supporting vascular patterning and expansion through the control of cell rearrangement.


Asunto(s)
Actomiosina/genética , Regulación del Desarrollo de la Expresión Génica , Fosfatasa de Miosina de Cadena Ligera/genética , Neovascularización Fisiológica/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Quinasas/genética , Proteínas Represoras/genética , Actomiosina/metabolismo , Animales , Tipificación del Cuerpo/genética , Embrión de Mamíferos , Embrión no Mamífero , Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Pulmón/irrigación sanguínea , Pulmón/citología , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Represoras/metabolismo , Retina/citología , Retina/crecimiento & desarrollo , Retina/metabolismo , Transducción de Señal , Pez Cebra
7.
Clin Cancer Res ; 22(23): 5805-5817, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27225693

RESUMEN

PURPOSE: Mutations in the PI3K pathway occur in 16% of patients with pancreatic neuroendocrine tumors (PanNETs), which suggests that these tumors are an exciting setting for PI3K/AKT/mTOR pharmacologic intervention. Everolimus, an mTOR inhibitor, is being used to treat patients with advanced PanNETs. However, resistance to mTOR-targeted therapy is emerging partially due to the loss of mTOR-dependent feedback inhibition of AKT. In contrast, the response to PI3K inhibitors in PanNETs is unknown. EXPERIMENTAL DESIGN: In the current study, we assessed the frequency of PI3K pathway activation in human PanNETs and in RIP1-Tag2 mice, a preclinical tumor model of PanNETs, and we investigated the therapeutic efficacy of inhibiting PI3K in RIP1-Tag2 mice using a combination of pan (GDC-0941) and p110α-selective (GDC-0326) inhibitors and isoform-specific PI3K kinase-dead-mutant mice. RESULTS: Human and mouse PanNETs showed enhanced pAKT, pPRAS40, and pS6 positivity compared with normal tissue. Although treatment of RIP1-Tag2 mice with GDC-0941 led to reduced tumor growth with no impact on tumor vessels, the selective inactivation of the p110α PI3K isoform, either genetically or pharmacologically, reduced tumor growth as well as vascular area. Furthermore, GDC-0326 reduced the incidence of liver and lymph node metastasis compared with vehicle-treated mice. We also demonstrated that tumor and stromal cells are implicated in the antitumor activity of GDC-0326 in RIP1-Tag2 tumors. CONCLUSIONS: Our data provide a rationale for p110α-selective intervention in PanNETs and unravel a new function of this kinase in cancer biology through its role in promoting metastasis. Clin Cancer Res; 22(23); 5805-17. ©2016 AACR.


Asunto(s)
Tumores Neuroendocrinos/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/farmacología , Benzoxepinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Everolimus/farmacología , Humanos , Imidazoles/farmacología , Indazoles/farmacología , Hígado/patología , Metástasis Linfática/patología , Ratones , Ratones Endogámicos C57BL , Tumores Neuroendocrinos/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
8.
Sci Transl Med ; 8(332): 332ra43, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27030595

RESUMEN

Venous malformations (VMs) are painful and deforming vascular lesions composed of dilated vascular channels, which are present from birth. Mutations in the TEK gene, encoding the tyrosine kinase receptor TIE2, are found in about half of sporadic (nonfamilial) VMs, and the causes of the remaining cases are unknown. Sclerotherapy, widely accepted as first-line treatment, is not fully efficient, and targeted therapy for this disease remains underexplored. We have generated a mouse model that faithfully mirrors human VM through mosaic expression of Pik3ca(H1047R), a constitutively active mutant of the p110α isoform of phosphatidylinositol 3-kinase (PI3K), in the embryonic mesoderm. Endothelial expression of Pik3ca(H1047R)resulted in endothelial cell (EC) hyperproliferation, reduction in pericyte coverage of blood vessels, and decreased expression of arteriovenous specification markers. PI3K pathway inhibition with rapamycin normalized EC hyperproliferation and pericyte coverage in postnatal retinas and stimulated VM regression in vivo. In line with the mouse data, we also report the presence of activating PIK3CA mutations in human VMs, mutually exclusive with TEK mutations. Our data demonstrate a causal relationship between activating Pik3ca mutations and the genesis of VMs, provide a genetic model that faithfully mirrors the normal etiology and development of this human disease, and establish the basis for the use of PI3K-targeted therapies in VMs.


Asunto(s)
Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Malformaciones Vasculares/enzimología , Malformaciones Vasculares/genética , Animales , Proliferación Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Humanos , Mesodermo/efectos de los fármacos , Mesodermo/embriología , Mesodermo/patología , Ratones Endogámicos C57BL , Mosaicismo/efectos de los fármacos , Pericitos/efectos de los fármacos , Pericitos/patología , Receptor TIE-2/metabolismo , Sirolimus/farmacología
9.
Gastroenterology ; 150(4): 982-97.e30, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26627607

RESUMEN

BACKGROUND & AIMS: Vascular endothelial growth factor (VEGF) regulates angiogenesis, yet therapeutic strategies to disrupt VEGF signaling can interfere with physiologic angiogenesis. In a search for ways to inhibit pathologic production or activities of VEGF without affecting its normal production or functions, we investigated the post-transcriptional regulation of VEGF by the cytoplasmic polyadenylation element-binding proteins CPEB1 and CPEB4 during development of portal hypertension and liver disease. METHODS: We obtained transjugular liver biopsies from patients with hepatitis C virus-associated cirrhosis or liver tissues removed during transplantation; healthy human liver tissue was obtained from a commercial source (control). We also performed experiments with male Sprague-Dawley rats and CPEB-deficient mice (C57BL6 or mixed C57BL6/129 background) and their wild-type littermates. Secondary biliary cirrhosis was induced in rats by bile duct ligation, and portal hypertension was induced by partial portal vein ligation. Liver and mesenteric tissues were collected and analyzed in angiogenesis, reverse transcription polymerase chain reaction, polyA tail, 3' rapid amplification of complementary DNA ends, Southern blot, immunoblot, histologic, immunohistochemical, immunofluorescence, and confocal microscopy assays. CPEB was knocked down with small interfering RNAs in H5V endothelial cells, and translation of luciferase reporters constructs was assessed. RESULTS: Activation of CPEB1 promoted alternative nuclear processing within noncoding 3'-untranslated regions of VEGF and CPEB4 messenger RNAs in H5V cells, resulting in deletion of translation repressor elements. The subsequent overexpression of CPEB4 promoted cytoplasmic polyadenylation of VEGF messenger RNA, increasing its translation; the high levels of VEGF produced by these cells led to their formation of tubular structures in Matrigel assays. We observed increased levels of CPEB1 and CPEB4 in cirrhotic liver tissues from patients, compared with control tissue, as well as in livers and mesenteries of rats and mice with cirrhosis or/and portal hypertension. Mice with knockdown of CPEB1 or CPEB4 did not overexpress VEGF or have signs of mesenteric neovascularization, and developed less-severe forms of portal hypertension after portal vein ligation. CONCLUSIONS: We identified a mechanism of VEGF overexpression in liver and mesentery that promotes pathologic, but not physiologic, angiogenesis, via sequential and nonredundant functions of CPEB1 and CPEB4. Regulation of CPEB4 by CPEB1 and the CPEB4 autoamplification loop induces pathologic angiogenesis. Strategies to block the activities of CPEBs might be developed to treat chronic liver and other angiogenesis-dependent diseases.


Asunto(s)
Hipertensión Portal/metabolismo , Cirrosis Hepática Biliar/metabolismo , Cirrosis Hepática/metabolismo , Neovascularización Patológica , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Regiones no Traducidas 3' , Adulto , Animales , Estudios de Casos y Controles , Línea Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Hipertensión Portal/genética , Hipertensión Portal/patología , Cirrosis Hepática/patología , Cirrosis Hepática/virología , Cirrosis Hepática Biliar/genética , Cirrosis Hepática Biliar/patología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Persona de Mediana Edad , Poliadenilación , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Ratas Sprague-Dawley , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transfección , Factores de Escisión y Poliadenilación de ARNm/deficiencia , Factores de Escisión y Poliadenilación de ARNm/genética
10.
Nat Commun ; 6: 7935, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26228240

RESUMEN

Coordinated activity of VEGF and Notch signals guides the endothelial cell (EC) specification into tip and stalk cells during angiogenesis. Notch activation in stalk cells leads to proliferation arrest via an unknown mechanism. By using gain- and loss-of-function gene-targeting approaches, here we show that PTEN is crucial for blocking stalk cell proliferation downstream of Notch, and this is critical for mouse vessel development. Endothelial deletion of PTEN results in vascular hyperplasia due to a failure to mediate Notch-induced proliferation arrest. Conversely, overexpression of PTEN reduces vascular density and abrogates the increase in EC proliferation induced by Notch blockade. PTEN is a lipid/protein phosphatase that also has nuclear phosphatase-independent functions. We show that both the catalytic and non-catalytic APC/C-Fzr1/Cdh1-mediated activities of PTEN are required for stalk cells' proliferative arrest. These findings define a Notch-PTEN signalling axis as an orchestrator of vessel density and implicate the PTEN-APC/C-Fzr1/Cdh1 hub in angiogenesis.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdh1/metabolismo , Proliferación Celular/genética , Células Endoteliales/metabolismo , Neovascularización Fisiológica/genética , Fosfohidrolasa PTEN/genética , ARN Mensajero/metabolismo , Receptores Notch/metabolismo , Animales , Técnica del Anticuerpo Fluorescente , Immunoblotting , Ratones , Fosfohidrolasa PTEN/metabolismo , Reacción en Cadena de la Polimerasa
11.
Mol Cell Oncol ; 2(2): e975624, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27308431

RESUMEN

Tumors need blood vessels for their growth, thus providing the rationale for antiangiogenic therapy in cancer treatment. However, intrinsic and acquired resistance and low response rates have turned out to be major limitations of antiangiogenic therapy. This emphasizes the need to further understand how the vasculature in cancer can be targeted. Although endothelial cells (ECs) rely on multiple growth factors and cytokines to grow, antiangiogenic therapies have mainly centered on targeting vascular endothelial growth factor (VEGF). Phosphoinositide 3-kinases (PI3Ks) form a family of 8 isoenzymes with non-redundant functions in normal biology and cancer. The subgroup of class I PI3Ks are situated at the crossroad of a plethora of proangiogenic signals and control cell growth, survival, motility, and metabolism. These isoenzymes have pleiotropic roles in the tumor microenvironment, including cell-autonomous functions in ECs, underscoring the complexity of targeting this pathway in cancer. Here, we describe how the PI3K axis influences angiogenesis in different cell compartments and summarize the diversity of vascular responses to PI3K inhibition. Targeting PI3K signaling by isoform-selective inhibitors, together with readjusting the current doses below the maximum tolerated dose, may improve clinical responses to class I PI3K anticancer agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...