Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0305064, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837973

RESUMEN

Artemisinin resistance threatens malaria control and elimination efforts globally. Recent studies have reported the emergence of Plasmodium falciparum parasites tolerant to artemisinin agents in sub-Saharan Africa, including Uganda. The current study assessed the day 3 parasite clearance and its correlation with P. falciparum K13 propeller gene (pfkelch13) mutations in P. falciparum parasites isolated from patients with uncomplicated malaria under artemether-lumefantrine (AL) treatment. This study enrolled 100 P. falciparum-positive patients to whom AL was prescribed between 09/September/2022 and 06/November/2022. Blood samples were collected in EDTA tubes before treatment initiation (day 0) and on day 3. Parasitemia was assessed by microscopy from blood smears and quantitative polymerase chain reaction (qPCR) from the DNA extracted. The day 0 parasite K13 gene was sequenced using Sanger sequencing. Sequence data were analysed using MEGA version 11 software. The data were analysed using STATA version 15, and the Mann‒Whitney U test was used to compare PCR parasite clearance on day 3 using the comparative CT value method and pfkelch13 mutations. The prevalence of day 3 parasitaemia was 24% (24/100) by microscopy and 63% (63/100) by qPCR from the AL-treated patients. P. falciparum K13-propeller gene polymorphism was detected in 18.8% (15/80) of the day 0 DNA samples. The K13 mutations found were C469Y, 12.5% (10/80); A675V, 2.5% (2/80); A569S, 1.25%, (1/80), A578S, 1.25%, (1/80) and; F491S, 1.25%, (1/80) a new allele not reported anywhere. The C469Y mutation, compared to the wild-type, was associated with delayed parasite clearance p = 0.0278, Hodges-Lehmann estimation 3.2108 on the log scale, (95%CI 1.7076, 4.4730). There was a high prevalence of day 3 P. falciparum among malaria patients treated using artemether-lumefantrine. We conclude the presence of the K13 mutation associated with artemisinin resistance by P. falciparum in Adjumani district, Uganda, necessitates regular surveillance of the effectiveness and efficacy of artemether-lumefantrine in the country.


Asunto(s)
Antimaláricos , Combinación Arteméter y Lumefantrina , Malaria Falciparum , Mutación , Parasitemia , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Combinación Arteméter y Lumefantrina/uso terapéutico , Uganda/epidemiología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Antimaláricos/uso terapéutico , Masculino , Femenino , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Parasitemia/epidemiología , Proteínas Protozoarias/genética , Adulto , Niño , Adolescente , Preescolar , Adulto Joven , Resistencia a Medicamentos/genética , Artemisininas/uso terapéutico , Persona de Mediana Edad
2.
medRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712186

RESUMEN

Artemisinin resistance threatens malaria control and elimination efforts globally. Recent studies have reported the emergence of Plasmodium falciparum parasites tolerant to artemisinin agents in sub-Saharan Africa, including Uganda. The current study assessed the day 3 parasite clearance and its correlation with P. falciparum K13 propeller gene (pfkelch13) mutations in P. falciparum parasites isolated from patients with uncomplicated malaria under artemether-lumefantrine (AL) treatment. This study enrolled 100 P. falciparum-positive patients to whom AL was prescribed between 09/September/2022 and 06/November/2022. Blood samples were collected in EDTA tubes before treatment initiation (day 0) and on day 3. Parasitemia was assessed by microscopy from blood smears and quantitative polymerase chain reaction (qPCR) from the DNA extracted. The day 0 parasite K13 gene was sequenced using Sanger sequencing. Sequence data were analysed using MEGA version 11 software. The data were analysed using STATA version 15, and the Mann‒Whitney U test was used to compare PCR parasite clearance on day 3 using the comparative CT value method and pfkelch13 mutations. The prevalence of day 3 parasitaemia was 24% (24/100) by microscopy and 63% (63/100) by qPCR from the AL-treated patients. P. falciparum K13-propeller gene polymorphism was detected in 18.8% (15/80) of the day 0 DNA samples. The K13 mutations found were C469Y, 12.5% (10/80); A675V, 2.5% (2/80); A569S, 1.25%, (1/80), A578S, 1.25%, (1/80) and; F491S, 1.25%, (1/80) a new allele not reported anywhere. The C469Y mutation, compared to the wild-type, was associated with delayed parasite clearance p=0.0278, Hodges-Lehmann estimation 3.2108 on the log scale, (95%CI 1.7076, 4.4730). There was a high prevalence of day 3 P. falciparum among malaria patients treated using artemether-lumefantrine. We conclude that the K13 mutation associated with artemisinin resistance by P. falciparum is present in Adjumani district, Uganda. This necessitates regular surveillance of the effectiveness and efficacy of artemether-lumefantrine in the country.

3.
Front Bioeng Biotechnol ; 10: 820218, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252130

RESUMEN

The greatest challenge of the current generation and generations to come is antimicrobial resistance, as different pathogenic bacteria have continuously evolved to become resistant to even the most recently synthesized antibiotics such as carbapenems. Resistance to carbapenems limits the therapeutic options of MDR infections as they are the only safe and effective drugs recommended to treat such infections. This scenario has complicated treatment outcomes, even to the commonest bacterial infections. Repeated attempts to develop other approaches have been made. The most promising novel therapeutic option is the use of nanomaterials as antimicrobial agents. Thus, this study examined the efficacy of Camellia sinensis extract (CSE) and Prunus africana bark extract (PAE) green synthesized Copper oxide nanoparticles (CuONPs) against carbapenem-resistant bacteria. Furthermore, the photocatalytic and antioxidant activities of CuONPs were evaluated to determine the potential of using them in a wide range of applications. CuONPs were biosynthesized by CSE and PAE. UV vis spectroscopy, X-ray Diffraction (XRD), Dynamic light scattering (DLS), Fourier Transform Infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) were used to characterize the nanoparticles. CuONPs susceptibility tests were carried out by the agar well diffusion method. The photocatalytic and antioxidant activities of the CuONPs were determined by the methylene blue and DPPH free radical scavenging assays, respectively. UV vis absorbance spectra registered surface plasmon resonance peaks between 272 and 286 nm, confirming the presence of CuONPs. The XRD array had nine strong peaks at 2θ values typical of CuONPs. FTIR spectra exhibited bands associated with organic functional groups confirming capping and functionalization of the CuONPs by the phytochemicals. DLS analysis registered a net zeta potential of +12.5 mV. SEM analysis revealed that the nanoparticles were spherical and clustered with a mean diameter of 6 nm. Phytosynthesized CuONPs exhibited the highest growth suppression zones of 30 mm with MIC ranging from 30 to 125 µg/ml against MDR bacteria. Furthermore, the CuONPs achieved a methylene blue dye photocatalysis degradation efficiency of 85.5% and a free radical scavenging activity of 28.8%. PAE and CSE successfully bio-reduced copper ions to the nanoscale level with potent antimicrobial, photocatalysis, and antioxidant activities.

4.
Ticks Tick Borne Dis ; 12(5): 101772, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34214889

RESUMEN

In Uganda, ticks and tick-borne diseases (TBDs) pose a big challenge to farmers. They reduce cattle productivity and cause severe economic damage. Several studies have documented the prevalence of tick-borne pathogens in cattle; however, their genetic characteristics and the role of wildlife-livestock interaction in the epidemiology of the TBDs are not well documented. This study assessed the prevalence and genetic diversity of various tick-borne pathogens (TBPs) as well as the risk factors associated with the occurrence of TBPs in blood samples of 208 randomly selected cattle from 16 farms located around Queen Elizabeth National Park (QENP) in Kasese District in western Uganda. Farming practices, disease challenges, and the level of wildlife-livestock interactions were assessed by a questionnaire survey amongst farm owners. Polymerase chain reaction (PCR) assays revealed that 62.9% (131/208) cattle samples were positive for one or more pathogens. Using specific PCR assays, we detected Theileria spp., Theileria parva, Anaplasma marginale, Anaplasma platys-like, and Babesia bigemina at 50.5%, 27.9%, 19.2%, 11.5% and 8.7%, respectively. We also confirmed the infection of samples by Theileria velifera and Theileria mutans after sequencing the Theileria spp. 18S rRNA gene. The risk factors associated with the occurrence of TBPs included communal grazing, herd size, age, and proximity to QENP. Phylogenetic analysis of the T. parva p104 gene showed a high identity to the previous isolates from Uganda and other East African countries and clustered closer to the buffalo (Syncerus caffer) isolates, suggesting a possible cross-species transmission. The sequences of A. marginale groEL and B. bigemina RAP-1a formed well-supported clades with high identities to the previous isolates identified from central and eastern Uganda. The isolates obtained from A. phagocytophilum 16S rRNA gene sequences showed relationship with A. platys-like, Anaplasma sp., uncultured Anaplasma species and A. phagocytophilum isolates from Africa, Asia, Europe, and the USA. The findings of the present study showed that TBDs are still a burden to farmers and that management practices in this area may increase the transmission of pathogens between livestock and wildlife.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/parasitología , Variación Genética , Parques Recreativos , Prevalencia , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/microbiología , Enfermedades por Picaduras de Garrapatas/parasitología , Uganda/epidemiología
5.
Pathogens ; 9(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121172

RESUMEN

Ticks and tick-borne diseases are major impediments to livestock production. To date, there have been several studies on the prevalence of tick-borne pathogens (TBPs) in cattle, but very few studies have documented TBPs in goats in Uganda. In this study, polymerase chain reaction assays and sequence analysis of different molecular markers were used to assess the presence and genetic characteristics of TBPs in 201 goats from Kasese district in western Uganda. The risk factors associated with TBP infections were also analyzed. We detected Theileria spp. (13.4%), Anaplasma phagocytophilum (10.9%), Anaplasma ovis (5.5%), Babesia ovis (5.5%), and Ehrlichia ruminantium (0.5%). The sequences of B. ovis ssu rRNA and A. ovismsp4 genes showed some degree of diversity among the parasite isolates in this study. The E. ruminantium pCS20 sequence formed a well-supported clade with isolates from Amblyomma variegatum ticks from Uganda. Wildlife interaction, sampling location, low body condition score, tick infestation, and herd size were significantly associated with TBP infections in the goats. The findings in this study provide important information on the epidemiology of tick-borne pathogens in Uganda, and show that goats could be potential reservoirs for tick-borne pathogens.

6.
Animals (Basel) ; 10(9)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927890

RESUMEN

Hemoplasmas (hemotropic mycoplasmas) are small pleomorphic bacteria that parasitize the surface of red blood cells of several mammalian species including cattle, goats, and humans, causing infectious anemia. However, studies on hemoplasmas have been neglected and to date, there are no studies on bovine and caprine hemoplasmas in Uganda or the entire East African region. In this study, a polymerase chain reaction (PCR) assay targeting the 16S rRNA gene was used to investigate the presence of hemoplasma in 409 samples (cattle = 208; goats = 201) collected from Kasese district, western Uganda. Results showed that 32.2% (67/208) of cattle samples and 43.8% (88/201) of goat samples were positive for hemoplasmas. Sequencing analysis identified Candidatus Mycoplasma haemobos and Mycoplasma wenyonii in cattle, while Candidatus Mycoplasma erythrocervae and Mycoplasma ovis were identified in goats. Statistical analysis showed that goats were at a higher risk of infection with hemoplasmas compared with cattle. To the best of our knowledge, this is the first molecular evidence of hemoplasmas in bovine and caprine animals in Uganda and the entire east African region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...