Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35746352

RESUMEN

A fetal ultrasound (US) is a technique to examine a baby's maturity and development. US examinations have varying purposes throughout pregnancy. Consequently, in the second and third trimester, US tests are performed for the assessment of Amniotic Fluid Volume (AFV), a key indicator of fetal health. Disorders resulting from abnormal AFV levels, commonly referred to as oligohydramnios or polyhydramnios, may pose a serious threat to a mother's or child's health. This paper attempts to accumulate and compare the most recent advancements in Artificial Intelligence (AI)-based techniques for the diagnosis and classification of AFV levels. Additionally, we provide a thorough and highly inclusive breakdown of other relevant factors that may cause abnormal AFV levels, including, but not limited to, abnormalities in the placenta, kidneys, or central nervous system, as well as other contributors, such as preterm birth or twin-to-twin transfusion syndrome. Furthermore, we bring forth a concise overview of all the Machine Learning (ML) and Deep Learning (DL) techniques, along with the datasets supplied by various researchers. This study also provides a brief rundown of the challenges and opportunities encountered in this field, along with prospective research directions and promising angles to further explore.


Asunto(s)
Oligohidramnios , Nacimiento Prematuro , Líquido Amniótico/diagnóstico por imagen , Líquido Amniótico/fisiología , Inteligencia Artificial , Femenino , Humanos , Recién Nacido , Oligohidramnios/diagnóstico , Oligohidramnios/etiología , Embarazo , Estudios Prospectivos
2.
Sensors (Basel) ; 21(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34770375

RESUMEN

The significant growth in the use of the Internet and the rapid development of network technologies are associated with an increased risk of network attacks. Network attacks refer to all types of unauthorized access to a network including any attempts to damage and disrupt the network, often leading to serious consequences. Network attack detection is an active area of research in the community of cybersecurity. In the literature, there are various descriptions of network attack detection systems involving various intelligent-based techniques including machine learning (ML) and deep learning (DL) models. However, although such techniques have proved useful within specific domains, no technique has proved useful in mitigating all kinds of network attacks. This is because some intelligent-based approaches lack essential capabilities that render them reliable systems that are able to confront different types of network attacks. This was the main motivation behind this research, which evaluates contemporary intelligent-based research directions to address the gap that still exists in the field. The main components of any intelligent-based system are the training datasets, the algorithms, and the evaluation metrics; these were the main benchmark criteria used to assess the intelligent-based systems included in this research article. This research provides a rich source of references for scholars seeking to determine their scope of research in this field. Furthermore, although the paper does present a set of suggestions about future inductive directions, it leaves the reader free to derive additional insights about how to develop intelligent-based systems to counter current and future network attacks.


Asunto(s)
Seguridad Computacional , Aprendizaje Automático , Algoritmos , Predicción , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...