Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38189610

RESUMEN

The correlation properties of a random system of densely packed disks, obeying a power-law size distribution, are analyzed in reciprocal space in the thermodynamic limit. This limit assumes that the total number of disks increases infinitely, while the mean density of the disk centers and the range of the size distribution are kept constant. We investigate the structure factor dependence on momentum transfer across various number of disks and extrapolate these findings to the thermodynamic limit. The fractal power-law decay of the structure factor is recovered in reciprocal space within the fractal range, which corresponds to the range of the size distribution in real space. The fractal exponent coincides with the exponent of the power-law size distribution as was shown previously by the authors of the work of Cherny et al. [J. Chem. Phys. 158(4), 044114 (2023)]. The dependence of the structure factor on density is examined. As is found, the power-law exponent remains unchanged but the fractal range shrinks when the packing fraction decreases. Additionally, the finite-size effects are studied at extremely low momenta of the order of the inverse system size. We show that the structure factor is parabolic in this region and calculate the prefactor analytically. The obtained results reveal fractal-like properties of the packing and can be used to analyze small-angle scattering from such systems.

2.
J Chem Phys ; 158(4): 044114, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36725508

RESUMEN

We consider a dense random packing of disks with a power-law distribution of radii and investigate their correlation properties. We study the corresponding structure factor, mass-radius relation, and pair distribution function of the disk centers. A toy model of dense segments in one dimension (1D) is solved exactly. It is shown theoretically in 1D and numerically in 1D and 2D that such a packing exhibits fractal properties. It is found that the exponent of the power-law distribution and the fractal dimension coincide. An approximate relation for the structure factor in arbitrary dimensions is derived, which can be used as a fitting formula in small-angle scattering. These findings can be useful for understanding the microstructural properties of various systems such as ultra-high performance concrete, high-internal-phase-ratio emulsions, or biological systems.

3.
Phys Rev E ; 106(2-1): 024108, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36110013

RESUMEN

We consider scattering exponents arising in small-angle scattering from power-law polydisperse surface and mass fractals. It is shown that a set of fractals, whose sizes are distributed according to a power law, can change its fractal dimension when the power-law exponent is sufficiently big. As a result, the scattering exponent corresponding to this dimension appears due to the spatial correlations between positions of different fractals. For large values of the momentum transfer, the correlations do not play any role, and the resulting scattering intensity is given by a sum of intensities of all composing fractals. The restrictions imposed on the power-law exponents are found. The obtained results generalize Martin's formulas for the scattering exponents of the polydisperse fractals.

4.
Phys Chem Chem Phys ; 21(24): 12748-12762, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31168550

RESUMEN

Small-angle scattering (SAS) of X-rays, neutrons or light from ensembles of randomly oriented and placed deterministic fractal structures is studied theoretically. In the standard analysis, a very few parameters can be determined from SAS data: the fractal dimension, and the lower and upper limits of the fractal range. The self-similarity of deterministic structures allows one to obtain additional characteristics of their spatial structures. In the present work, we consider models that can describe accurately SAS from such structures. The developed models of deterministic fractals offer many advantages in describing fractal systems, including the possibility to extract additional structural information, an analytic description of SAS intensity, and effective computational algorithms. The generalized Cantor fractal and few of its variants are used as basic examples to illustrate the above concepts and to model physical samples with mass, surface, and multi-fractal structures. The differences between the deterministic and random fractal structures in analyzing SAS data are emphasized. Several limitations are identified in order to motivate future investigations of deterministic fractal structures.

5.
Phys Chem Chem Phys ; 19(3): 2261-2268, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28054690

RESUMEN

The small-angle scattering (SAS) from the Cantor surface fractal on the plane and Koch snowflake is considered. We develop the construction algorithm for the Koch snowflake, which makes possible the recurrence relation for the scattering amplitude. The surface fractals can be decomposed into a sum of surface mass fractals for arbitrary fractal iteration, which enables various approximations for the scattering intensity. It is shown that for the Cantor fractal, one can neglect with good accuracy the correlations between the mass fractal amplitudes, while for the Koch snowflake, these correlations are important. It is shown that nevertheless, correlations can be built in the mass fractal amplitudes, which explains the decay of the scattering intensity I(q) ∼ qDs-4, with 1 < Ds < 2 being the fractal dimension of the perimeter. The curve I(q)q4-Ds is found to be log-periodic in the fractal region with a period equal to the scaling factor of the fractal. The log-periodicity arises from the self-similarity of the sizes of basic structural units rather than from correlations between their distances. A recurrence relation is obtained for the radius of gyration of the Koch snowflake, which is solved in the limit of infinite iterations. The present analysis allows us to obtain additional information from SAS data, such as the edges of the fractal regions, the fractal iteration number and the scaling factor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...