Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Methods ; 20(7): 1037-1047, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37336949

RESUMEN

Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve 'active' regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain 'inactive' regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies.


Asunto(s)
Cromatina , Genoma , Animales , Ratones , Cromatina/genética , Mapeo Cromosómico/métodos , Cromosomas , Genómica/métodos
2.
Phys Rev E ; 104(5-1): 054402, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34942797

RESUMEN

Novel technologies are revealing that chromosomes have a complex three-dimensional organization within the cell nucleus that serves functional purposes. Models from polymer physics have been developed to quantitively understand the molecular principles controlling their structure and folding mechanisms. Here, by using massive molecular-dynamics simulations we show that classical scaling laws combined with finite-size effects of a simple polymer model can effectively explain the scaling behavior that chromatin exhibits at the topologically associating domains level, as revealed by experimental observations. Model results are then validated against recently published high-resolution in situ Hi-C data.


Asunto(s)
Cromosomas , Polímeros , Núcleo Celular , Cromatina
3.
Cell Rep ; 30(7): 2125-2135.e5, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075757

RESUMEN

We investigate the three-dimensional (3D) conformations of the α-globin locus at the single-allele level in murine embryonic stem cells (ESCs) and erythroid cells, combining polymer physics models and high-resolution Capture-C data. Model predictions are validated against independent fluorescence in situ hybridization (FISH) data measuring pairwise distances, and Tri-C data identifying three-way contacts. The architecture is rearranged during the transition from ESCs to erythroid cells, associated with the activation of the globin genes. We find that in ESCs, the spatial organization conforms to a highly intermingled 3D structure involving non-specific contacts, whereas in erythroid cells the α-globin genes and their enhancers form a self-contained domain, arranged in a folded hairpin conformation, separated from intermingling flanking regions by a thermodynamic mechanism of micro-phase separation. The flanking regions are rich in convergent CTCF sites, which only marginally participate in the erythroid-specific gene-enhancer contacts, suggesting that beyond the interaction of CTCF sites, multiple molecular mechanisms cooperate to form an interacting domain.


Asunto(s)
Células Eritroides/metabolismo , Secuencias Invertidas Repetidas/genética , Globinas alfa/genética , Animales , Humanos , Ratones
4.
Methods ; 181-182: 70-79, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604121

RESUMEN

The combination of modelling and experimental advances can provide deep insights for understanding chromatin 3D organization and ultimately its underlying mechanisms. In particular, models of polymer physics can help comprehend the complexity of genomic contact maps, as those emerging from technologies such as Hi-C, GAM or SPRITE. Here we discuss a method to reconstruct 3D structures from Genome Architecture Mapping (GAM) data, based on PRISMR, a computational approach introduced to find the minimal polymer model best describing Hi-C input data from only polymer physics. After recapitulating the PRISMR procedure, we describe how we extended it for treating GAM data. We successfully test the method on a 6 Mb region around the Sox9 gene and, at a lower resolution, on the whole chromosome 7 in mouse embryonic stem cells. The PRISMR derived 3D structures from GAM co-segregation data are finally validated against independent Hi-C contact maps. The method results to be versatile and robust, hinting that it can be similarly applied to different experimental data, such as SPRITE or microscopy distance data.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas/química , Modelos Químicos , Física/métodos , Animales , Cromosomas/genética , Sitios Genéticos , Genoma , Ratones , Conformación Molecular , Células Madre Embrionarias de Ratones , Polímeros/química , Factor de Transcripción SOX9/genética
5.
Cell Rep ; 28(6): 1574-1583.e4, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390570

RESUMEN

Complex architectural rearrangements are associated to the control of the HoxD genes in different cell types; yet, how they are implemented in single cells remains unknown. By use of polymer models, we dissect the locus 3D structure at the single DNA molecule level in mouse embryonic stem and cortical neuronal cells, as the HoxD cluster changes from a poised to a silent state. Our model describes published Hi-C, 3-way 4C, and FISH data with high accuracy and is validated against independent 4C data on the Nsi-SB 0.5-Mb duplication and on triple contacts. It reveals the mode of action of compartmentalization on the regulation of the HoxD genes that have gene- and cell-type-specific multi-way interactions with their regulatory elements and high cell-to-cell variability. It shows that TADs and higher-order 3D structures, such as metaTADs, associate with distinct combinations of epigenetic factors, including but not limited to CCCTC-binding factor (CTCF) and histone marks.


Asunto(s)
Células Madre Embrionarias/metabolismo , Neuronas/metabolismo , Animales , Ratones , Conformación Molecular
6.
Proc Natl Acad Sci U S A ; 116(25): 12390-12399, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31147463

RESUMEN

Long-range gene regulation involves physical proximity between enhancers and promoters to generate precise patterns of gene expression in space and time. However, in some cases, proximity coincides with gene activation, whereas, in others, preformed topologies already exist before activation. In this study, we investigate the preformed configuration underlying the regulation of the Shh gene by its unique limb enhancer, the ZRS, in vivo during mouse development. Abrogating the constitutive transcription covering the ZRS region led to a shift within the Shh-ZRS contacts and a moderate reduction in Shh transcription. Deletion of the CTCF binding sites around the ZRS resulted in the loss of the Shh-ZRS preformed interaction and a 50% decrease in Shh expression but no phenotype, suggesting an additional, CTCF-independent mechanism of promoter-enhancer communication. This residual activity, however, was diminished by combining the loss of CTCF binding with a hypomorphic ZRS allele, resulting in severe Shh loss of function and digit agenesis. Our results indicate that the preformed chromatin structure of the Shh locus is sustained by multiple components and acts to reinforce enhancer-promoter communication for robust transcription.


Asunto(s)
Cromatina/metabolismo , Extremidades/embriología , Proteínas Hedgehog/genética , Transcripción Genética , Animales , Sitios de Unión , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación hacia Abajo , Elementos de Facilitación Genéticos , Proteínas de la Membrana/genética , Ratones , Regiones Promotoras Genéticas , Cohesinas
7.
Wiley Interdiscip Rev Syst Biol Med ; 11(4): e1444, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30566285

RESUMEN

The depth and complexity of data now available on chromosome 3D architecture, derived by new technologies such as Hi-C, have triggered the development of models based on polymer physics to explain the observed patterns and the underlying molecular folding mechanisms. Here, we give an overview of some of the ideas and models from physics introduced to date, along with their progresses and limitations in the description of experimental data. In particular, we focus on the Strings&Binders and the Loop Extrusion model of chromatin architecture. This article is categorized under: Analytical and Computational Methods > Computational Methods.


Asunto(s)
Núcleo Celular/química , Modelos Biológicos , Polímeros/química , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN/química , ADN/metabolismo , Humanos , Termodinámica
8.
Nat Genet ; 50(10): 1463-1473, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30262816

RESUMEN

The regulatory specificity of enhancers and their interaction with gene promoters is thought to be controlled by their sequence and the binding of transcription factors. By studying Pitx1, a regulator of hindlimb development, we show that dynamic changes in chromatin conformation can restrict the activity of enhancers. Inconsistent with its hindlimb-restricted expression, Pitx1 is controlled by an enhancer (Pen) that shows activity in forelimbs and hindlimbs. By Capture Hi-C and three-dimensional modeling of the locus, we demonstrate that forelimbs and hindlimbs have fundamentally different chromatin configurations, whereby Pen and Pitx1 interact in hindlimbs and are physically separated in forelimbs. Structural variants can convert the inactive into the active conformation, thereby inducing Pitx1 misexpression in forelimbs, causing partial arm-to-leg transformation in mice and humans. Thus, tissue-specific three-dimensional chromatin conformation can contribute to enhancer activity and specificity in vivo and its disturbance can result in gene misexpression and disease.


Asunto(s)
Cromatina/química , Elementos de Facilitación Genéticos/fisiología , Miembro Posterior/embriología , Conformación Molecular , Morfogénesis/genética , Factores de Transcripción Paired Box/fisiología , Animales , Sistemas CRISPR-Cas , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , ADN/química , ADN/metabolismo , Embrión de Mamíferos , Miembro Anterior/embriología , Miembro Anterior/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Miembro Posterior/metabolismo , Ratones , Ratones Transgénicos , Conformación de Ácido Nucleico , Factores de Transcripción Paired Box/genética
9.
Nat Genet ; 50(5): 662-667, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29662163

RESUMEN

Structural variants (SVs) can result in changes in gene expression due to abnormal chromatin folding and cause disease. However, the prediction of such effects remains a challenge. Here we present a polymer-physics-based approach (PRISMR) to model 3D chromatin folding and to predict enhancer-promoter contacts. PRISMR predicts higher-order chromatin structure from genome-wide chromosome conformation capture (Hi-C) data. Using the EPHA4 locus as a model, the effects of pathogenic SVs are predicted in silico and compared to Hi-C data generated from mouse limb buds and patient-derived fibroblasts. PRISMR deconvolves the folding complexity of the EPHA4 locus and identifies SV-induced ectopic contacts and alterations of 3D genome organization in homozygous or heterozygous states. We show that SVs can reconfigure topologically associating domains, thereby producing extensive rewiring of regulatory interactions and causing disease by gene misexpression. PRISMR can be used to predict interactions in silico, thereby providing a tool for analyzing the disease-causing potential of SVs.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/química , Cromatina/genética , Polímeros/química , Animales , Factor de Unión a CCCTC/genética , Línea Celular , Cromosomas/genética , Elementos de Facilitación Genéticos/genética , Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética , Receptor EphA4/genética
10.
Methods ; 142: 81-88, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29522804

RESUMEN

In recent years interest has grown on the applications of polymer physics to model chromatin folding in order to try to make sense of the complexity of experimental data emerging from new technologies such as Hi-C or GAM, in a principled way. Here we review the methods employed to efficiently implement Molecular Dynamics computer simulations of polymer models, focusing in particular on the String&Binders Switch (SBS) model. The constant improvement of such methods and computer power is returning increasingly more accurate insights on the structure and molecular mechanisms underlying the spatial organization of chromosomes in the cell nucleus. We aim to provide an account of the state of the art of computational techniques employed in this type of investigations and to review recent applications of such methods to the description of real genomic loci, such as the Sox9 locus in mESC.


Asunto(s)
Cromatina/química , Sitios Genéticos/genética , Modelos Genéticos , Simulación de Dinámica Molecular , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Genoma , Humanos , Ratones , Polímeros/química , Factor de Transcripción SOX9/genética
11.
Front Neurosci ; 11: 559, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29066944

RESUMEN

In the last decade, the developments of novel technologies, such as Hi-C or GAM methods, allowed to discover that chromosomes in the nucleus of mammalian cells have a complex spatial organization, encompassing the functional contacts between genes and regulators. In this work, we review recent progresses in chromosome modeling based on polymer physics to understand chromatin structure and folding mechanisms. As an example, we derive in mouse embryonic stem cells the full 3D structure of the Bmp7 locus, a genomic region that plays a key role in osteoblastic differentiation. Next, as an application to Neuroscience, we present the first 3D model for the mouse orthologoue of the Williams-Beuren syndrome 7q11.23 human locus. Deletions and duplications of the 7q11.23 region generate neurodevelopmental disorders with multi-system involvement and variable expressivity, and with autism. Understanding the impact of such mutations on the rewiring of the interactions of genes and regulators could be a new key to make sense of their related diseases, with potential applications in biomedicine.

12.
Chromosome Res ; 25(1): 25-34, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28070687

RESUMEN

We review the picture of chromatin large-scale 3D organization emerging from the analysis of Hi-C data and polymer modeling. In higher mammals, Hi-C contact maps reveal a complex higher-order organization, extending from the sub-Mb to chromosomal scales, hierarchically folded in a structure of domains-within-domains (metaTADs). The domain folding hierarchy is partially conserved throughout differentiation, and deeply correlated to epigenomic features. Rearrangements in the metaTAD topology relate to gene expression modifications: in particular, in neuronal differentiation models, topologically associated domains (TADs) tend to have coherent expression changes within architecturally conserved metaTAD niches. To identify the nature of architectural domains and their molecular determinants within a principled approach, we discuss models based on polymer physics. We show that basic concepts of interacting polymer physics explain chromatin spatial organization across chromosomal scales and cell types. The 3D structure of genomic loci can be derived with high accuracy and its molecular determinants identified by crossing information with epigenomic databases. In particular, we illustrate the case of the Sox9 locus, linked to human congenital disorders. The model in-silico predictions on the effects of genomic rearrangements are confirmed by available 5C data. That can help establishing new diagnostic tools for diseases linked to chromatin mis-folding, such as congenital disorders and cancer.


Asunto(s)
Cromatina/ultraestructura , Modelos Moleculares , Polímeros/química , Animales , Cromosomas/ultraestructura , Epigenómica , Humanos
13.
Phys Rev E ; 94(4-1): 042402, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27841585

RESUMEN

As revealed by novel technologies, chromosomes in the nucleus of mammalian cells have a complex spatial organization that serves vital functional purposes. Here we use models from polymer physics to identify the mechanisms that control their three-dimensional spatial organization. In particular, we investigate a model of the Hox-B locus, an important genomic region involved in embryo development, to expose the principles regulating chromatin folding and its complex behaviors in mouse embryonic stem cells. We reconstruct with high accuracy the pairwise contact matrix of the Hox-B locus as derived by Hi-C experiments and investigate its hierarchical folding dynamics. We trace back the observed behaviors to general scaling properties of polymer physics.


Asunto(s)
Cromosomas/metabolismo , Genes Homeobox , Modelos Moleculares , Polímeros/química , Animales , Cromatina/química , Cromatina/metabolismo , Cromosomas/química , Cromosomas/genética , Ratones , Pliegue de Proteína
14.
Methods Mol Biol ; 1480: 201-6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27659986

RESUMEN

We summarize the picture emerging from recently proposed models of polymer physics describing the general features of chromatin large scale spatial architecture, as revealed by microscopy and Hi-C experiments.


Asunto(s)
Biopolímeros/química , Cromatina/química , Cromosomas/química , Microscopía/métodos , Biopolímeros/genética , Núcleo Celular/química , Núcleo Celular/genética , Cromatina/genética , Cromosomas/genética
15.
Sci Rep ; 6: 29775, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27405443

RESUMEN

Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding.


Asunto(s)
Cromatina/química , Cromosomas Humanos/química , Termodinámica , Animales , Cromatina/metabolismo , Cromosomas Humanos/metabolismo , Sitios Genéticos , Humanos , Ratones , Factor de Transcripción SOX9/química , Factor de Transcripción SOX9/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...