Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(20): 13727-13732, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728661

RESUMEN

Although chemical methods for the selective derivatization of amino acid (AA) side chains in peptides and proteins are available, selective N-terminal labeling is challenging, especially for glycine, which has no side chain at the α-carbon position. We report here a double activation at glycine's α-methylene group that allows this AA to be differentiated from the other 19 AAs. A condensation reaction of dibenzoylmethane with glycine results in the formation of an imine, and subsequent tautomerization is followed by intramolecular cyclization, leading to the formation of a fluorescent pyrrole ring. Additionally, the approach exhibits compatibility with AAs possessing reactive side chains. Further, the method allows for selective pull-down assays of N-terminal glycine peptides from mixtures without prior knowledge of the N-terminal peptide distribution.


Asunto(s)
Colorantes Fluorescentes , Glicina , Péptidos , Glicina/química , Colorantes Fluorescentes/química , Péptidos/química , Estructura Molecular
2.
Chem Sci ; 15(14): 5284-5293, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38577351

RESUMEN

Sequence-defined polymers (SDPs) are currently being investigated for use as information storage media. As the number of monomers in the SDPs increases, with a corresponding increase in mathematical base, the use of tandem-MS for de novo sequencing becomes more challenging. In contrast, chain-end degradation routines are truly de novo, potentially allowing very large mathematical bases for encoding. While alphabetic scripts have a few dozen symbols, logographic scripts, such as Chinese, can have several thousand symbols. Using a new in situ consecutive click reaction approach on an oligourethane backbone for writing, and a previously reported chain-end degradation routine for reading, we encoded/decoded a confucius proverb written in Chinese characters using two encoding schemes: Unicode and Zhèng Ma. Unicode is an internationally standardized arbitrary string of hexadecimal (base-16) symbols which efficiently encodes uniquely identifiable symbols but requires complete fidelity of transmission, or context-based inferential strategies to be interpreted. The Zhèng Ma approach encodes with a base-26 system using the visual characteristics and internal composition of Chinese characters themselves, which leads to greater ambiguity of encoded strings, but more robust retrievability of information from partial or corrupted encodings. The application of information-encoded oligourethanes to two different encoding systems allowed us to establish their flexibility and versatility for data storage. We found the oligourethanes immensely adaptable to both encoding schemes for Chinese characters, and we highlight the expected tradeoff between the efficiency and uniqueness of Unicode encoding on the one hand, and the fidelity to a scripts' particular visual characteristics on the other.

3.
J Am Chem Soc ; 146(15): 10621-10631, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38584362

RESUMEN

Lysine dimethylation (Kme2) is a crucial post-translational modification (PTM) that regulates biological processes and is implicated in diseases. There is significant interest in globally identifying these methylation marks. Unfortunately, this remains challenging due to the lack of robust technologies for selectively labeling Kme2. To address this, we present a chemical method named tertiary amine coupling by oxidation (TACO). This method selectively modifies Kme2 to aldehydes using Selectfluor and a base. The resulting aldehydes from Kme2 were then functionalized using reductive amination, thiolamine, and oxime chemistry. We successfully demonstrated the versatility of TACO in selectively labeling Kme2 peptides and proteins in complex cell lysate mixtures with varying payloads, including affinity tags and fluorophores. We further showed the application of TACO chemistry for the identification of Kme2 sites at a single-molecule level by fluorosequencing. We discovered novel 30 Kme2 sites, in addition to previously known 5 Kme2 sites, by proteomics analysis of TACO-modified nuclear extracts. Our work establishes a unique strategy for covalently modifying Kme2, facilitating the global identification of low-abundance Kme2-PTMs and their sites within complex cell lysate mixtures.


Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Lisina/química , Proteínas/química , Aminas , Aldehídos
4.
Angew Chem Int Ed Engl ; 63(19): e202400767, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38421186

RESUMEN

The analysis of the absolute configuration, enantiomeric composition, and concentration of chiral compounds are frequently encountered tasks across the chemical and health sciences. Chiroptical sensing methods can streamline this work and allow high-throughput screening with remarkable reduction of operational time and cost. During the last few years, significant methodological advances with innovative chirality sensing systems, the use of computer-generated calibration curves, machine learning assistance, and chemometric data processing, to name a few, have emerged and are now matched with commercially available multi-well plate CD readers. These developments have reframed the chirality sensing space and provide new opportunities that are of interest to a large group of chemists. This review will discuss chirality sensing strategies and applications with representative small-molecule CD sensors. Emphasis will be given to important milestones and recent advances that accelerate chiral compound analysis by outperforming traditional methods, conquer new directions, and pioneering efforts that lie at the forefront of chiroptical high-throughput screening developments. The goal is to provide the reader with a thorough understanding of the current state and a perspective of future directions of this rapidly emerging field.

5.
ACS Nano ; 17(23): 24218-24226, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38009590

RESUMEN

Nanocrystal gels exhibit collective optical phenomena based on interactions among their constituent building blocks. However, their inherently disordered structures have made it challenging to understand, predict, or design properties such as optical absorption spectra that are sensitive to the coupling between the plasmon resonances of the individual nanocrystals. Here, we bring indium tin oxide nanocrystal gels under chemical control and show that their infrared absorption can be predicted and systematically tuned by selecting the nanocrystal sizes and compositions and molecular structures of the link-mediating surface ligands. Thermoreversible assemblies with metal-terpyridine links form reproducible gel architectures, enabling us to derive a plasmon ruler that governs the spectral shifts upon gelation, predicated on the nanocrystal and ligand compositions. This empirical guide is validated using large-scale, many-bodied simulations to compute the optical spectra of gels with varied structural parameters. Based on the derived plasmon ruler, we design and demonstrate a nanocrystal mixture whose spectrum exhibits distinctive line narrowing upon assembly.

6.
bioRxiv ; 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37745461

RESUMEN

The need to accurately survey proteins and their modifications with ever higher sensitivities, particularly in clinical settings with limited samples, is spurring development of new single molecule proteomics technologies. Fluorosequencing is one such highly parallelized single molecule peptide sequencing platform, based on determining the sequence positions of select amino acid types within peptides to enable their identification and quantification from a reference database. Here, we describe substantial improvements to fluorosequencing, including identifying fluorophores compatible with the sequencing chemistry, mitigating dye-dye interactions through the use of extended polyproline linkers, and developing an end-to-end workflow for sample preparation and sequencing. We demonstrate by fluorosequencing peptides in mixtures and identifying a target neoantigen from a database of decoy MHC peptides, highlighting the potential of the technology for high sensitivity clinical applications.

7.
JACS Au ; 3(8): 2257-2268, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37654579

RESUMEN

A recurring dream of molecular recognition is to create receptors that distinguish between closely related targets with sufficient accuracy, especially in water. The more useful the targets, the more valuable the dream becomes. We now present multianionic trimeric cyclophane receptors with a remarkable ability to bind the iconic (bipyridine)3Ru(II) (with its huge range of applications) while rejecting the nearly equally iconic (phenanthroline)3Ru(II). These receptors not only selectively capture (bipyridine)3Ru(II) but also can be redox-switched to release the guest. 1D- and 2D(ROESY)-NMR spectroscopy, luminescence spectroscopy, and molecular modeling enabled this discovery. This outcome allows the control of these applications, e.g., as a photocatalyst or as a luminescent sensor, by selectively hiding or exposing (bipyridine)3Ru(II). Overall, a 3D nanometric object is selected, picked-up, and dropped-off by a discrete molecular host. The multianionic receptors protect excited states of these metal complexes from phenolate quenchers so that the initial step in photocatalytic phenolate oxidation is retarded by nearly 2 orders of magnitude. This work opens the way for (bipyridine)3Ru(II) to be manipulated in the presence of other functional nano-objects so that many of its applications can be commanded and controlled. We have a cyclophane-based toolkit that can emulate some aspects of proteins that selectively participate in cell signaling and metabolic pathways by changing shape upon environmental commands being received at a location remote from the active site.

8.
Org Chem Front ; 10(6): 1386-1392, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-37636898

RESUMEN

Characterization of chiral molecules in solution is paramount for measuring reaction success. However, techniques to distinguish between chiral molecules containing more than one stereocenter through the use of optical techniques remains a challenge. Herein, we report a techique using a series of circular dichroism spectra to train multivariate regression models that are capable of predicting the complete speciation of 3-hydroxy-2-methylbutanoic acid stereoisomers. From this, it is possible to rapidly and accurately determine the enantiomeric excess and diastereomeric excess of the solution without the need for chiral chromatography.

9.
Chemistry ; 29(57): e202301949, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37475574

RESUMEN

The creation of complementary products via templating is a hallmark feature of nucleic acid replication. Outside of nucleic acid-like molecules, the templated synthesis of a hetero-complementary copy is still rare. Herein we describe one cycle of templated synthesis that creates homomeric macrocyclic peptides guided by linear instructing strands. This strategy utilizes hydrazone formation to pre-organize peptide oligomeric monomers along the template on a solid support resin, and microwave-assisted peptide synthesis to couple monomers and cyclize the strands. With a flexible templating strand, we can alter the size of the complementary macrocycle products by increasing the length and number of the binding peptide oligomers, showing the potential to precisely tune the size of macrocyclic products. For the smaller macrocyclic peptides, the products can be released via hydrolysis and characterized by ESI-MS.


Asunto(s)
Ácidos Nucleicos , Péptidos , Péptidos/química , Técnicas de Química Sintética
10.
Chem Sci ; 14(22): 5992-5999, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293656

RESUMEN

Atropisomeric scaffolds are a common design element found in pharmaceuticals, many deriving from an N-C axis of chirality. The handedness associated with atropisomeric drugs is oftentimes crucial for their efficacy and/or safety. With the increased use of high-throughput screening (HTS) for drug discovery, the need for rapid enantiomeric excess (ee) analysis is needed to keep up with the fast workflow. Here, we describe a circular dichroism (CD) based assay that could be applied to the ee determination of N-C axially chiral triazole derivatives. Analytical samples for CD were prepared from crude mixtures by three sequential steps: liquid-liquid extraction (LLE), a wash-elute, and complexation with Cu(ii) triflate. The initial ee measurement of five samples of atropisomer 2 was conducted by the use of a CD spectropolarimeter with a 6-position cell changer, resulting in errors of less than 1% ee. High-throughput ee determination was performed on a CD plate reader using a 96-well plate. A total of 28 atropisomeric samples (14 for 2 and 14 for 3) were screened for ee. The CD readings were completed in 60 seconds with average absolute errors of ±7.2% and 5.7% ee for 2 and 3, respectively.

11.
Nano Lett ; 23(7): 3030-3037, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36989531

RESUMEN

Optical properties of nanoparticle assemblies reflect distinctive characteristics of their building blocks and spatial organization, giving rise to emergent phenomena. Integrated experimental and computational studies have established design principles connecting the structure to properties for assembled clusters and superlattices. However, conventional electromagnetic simulations are too computationally expensive to treat more complex assemblies. Here we establish a fast, materials agnostic method to simulate the optical response of large nanoparticle assemblies incorporating both structural and compositional complexity. This many-bodied, mutual polarization method resolves limitations of established approaches, achieving rapid, accurate convergence for configurations including thousands of nanoparticles, with some overlapping. We demonstrate these capabilities by reproducing experimental trends and uncovering far- and near-field mechanisms governing the optical response of plasmonic semiconductor nanocrystal assemblies including structurally complex gel networks and compositionally complex mixed binary superlattices. This broadly applicable framework will facilitate the design of complex, hierarchically structured, and dynamic assemblies for desired optical characteristics.

12.
J Chem Phys ; 158(2): 024903, 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641404

RESUMEN

Gelation offers a powerful strategy to assemble plasmonic nanocrystal networks incorporating both the distinctive optical properties of constituent building blocks and customizable collective properties. Beyond what a single-component assembly can offer, the characteristics of nanocrystal networks can be tuned in a broader range when two or more components are intimately combined. Here, we demonstrate mixed nanocrystal gel networks using thermoresponsive metal-terpyridine links that enable rapid gel assembly and disassembly with thermal cycling. Plasmonic indium oxide nanocrystals with different sizes, doping concentrations, and shapes are reliably intermixed in linked gel assemblies, exhibiting collective infrared absorption that reflects the contributions of each component while also deviating systematically from a linear combination of the spectra for single-component gels. We extend a many-bodied, mutual polarization method to simulate the optical response of mixed nanocrystal gels, reproducing the experimental trends with no free parameters and revealing that spectral deviations originate from cross-coupling between nanocrystals with distinct plasmonic properties. Our thermoreversible linking strategy directs the assembly of mixed nanocrystal gels with continuously tunable far- and near-field optical properties that are distinct from those of the building blocks or mixed close-packed structures.

13.
Chem Soc Rev ; 52(2): 663-704, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36546880

RESUMEN

Chemical warfare agents (CWAs) are among the most prominent threats to the human population, our peace, and social stability. Therefore, their detection and quantification are of utmost importance to ensure the security and protection of mankind. In recent years, significant developments have been made in supramolecular chemistry, analytical chemistry, and molecular sensors, which have improved our capability to detect CWAs. Fluorescent and colorimetric chemosensors are attractive tools that allow the selective, sensitive, cheap, portable, and real-time analysis of the potential presence of CWAs, where suitable combinations of selective recognition and transduction can be integrated. In this review, we provide a detailed discussion on recently reported molecular sensors with a specific focus on the sensing of each class of CWAs such as nerve agents, blister agents, blood agents, and other toxicants. We will also discuss the current technology used by military forces, and these discussions will include the type of instrumentation and established protocols. Finally, we will conclude this review with our outlook on the limitations and challenges in the area and summarize the potential of promising avenues for this field.


Asunto(s)
Sustancias para la Guerra Química , Humanos , Sustancias para la Guerra Química/análisis , Colorimetría , Colorantes
14.
Chem Soc Rev ; 52(2): 601-662, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36149439

RESUMEN

Chemical warfare agents (CWAs) are toxic chemicals that have been intentionally developed for targeted and deadly use on humans. Although intended for military targets, the use of CWAs more often than not results in mass civilian casualties. To prevent further atrocities from occurring during conflicts, a global ban was implemented through the chemical weapons convention, with the aim of eliminating the development, stockpiling, and use of CWAs. Unfortunately, because of their relatively low cost, ease of manufacture and effectiveness on mass populations, CWAs still exist in today's world. CWAs have been used in several recent terrorist-related incidents and conflicts (e.g., Syria). Therefore, they continue to remain serious threats to public health and safety and to global peace and stability. Analytical methods that can accurately detect CWAs are essential to global security measures and for forensic analysis. Small molecule fluorescent probes have emerged as attractive chemical tools for CWA detection, due to their simplicity, ease of use, excellent selectivity and high sensitivity, as well as their ability to be translated into handheld devices. This includes the ability to non-invasively image CWA distribution within living systems (in vitro and in vivo) to permit in-depth evaluation of their biological interactions and allow potential identification of therapeutic countermeasures. In this review, we provide an overview of the various reported fluorescent probes that have been designed for the detection of CWAs. The mechanism for CWA detection, change in optical output and application for each fluorescent probe are described in detail. The limitations and challenges of currently developed fluorescent probes are discussed providing insight into the future development of this research area. We hope the information provided in this review will give readers a clear understanding of how to design a fluorescent probe for the detection of a specific CWA. We anticipate that this will advance our security systems and provide new tools for environmental and toxicology monitoring.


Asunto(s)
Sustancias para la Guerra Química , Humanos , Sustancias para la Guerra Química/análisis , Colorantes Fluorescentes
15.
J Org Chem ; 87(22): 15071-15076, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36318490

RESUMEN

Phenyl boronic acids are valuable for medical diagnostics and biochemistry studies due to their ability to readily bind with carbohydrates in water. Incorporated in carbohydrates are 1,2-diols, which react with boronic acids through a reversible covalent condensation pathway. A wide variety of boronic acids have been employed for diol binding with differing substitution of the phenyl ring, with the goals of simplifying their synthesis and altering their thermodynamics of complexation. One method for monitoring their pKa's and binding is 11B NMR spectroscopy. Herein, we report a comprehensive study employing 11B NMR spectroscopy to determine the pKa of the most commonly used phenyl boronic acids and their binding with catechol or d,l-hydrobenzoin as prototypical diols. The chemical shift of the boronic acid transforming into the boronate ester was monitored at pHs ranging from 2 to 10. With each boronic acid, the results confirm (1) the necessity to use pHs above their pKa's to induce complexation, (2) that the pKa's change in the presence of diols, and (3) that 11B NMR spectroscopy is a particularly convenient tool for monitoring these interconnected acidity and binding phenomena.


Asunto(s)
Alcoholes , Ácidos Borónicos , Ácidos Borónicos/química , Alcoholes/química , Espectroscopía de Resonancia Magnética , Carbohidratos
16.
Nat Commun ; 13(1): 6322, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36280685

RESUMEN

The ribosome is a macromolecular machine that catalyzes the sequence-defined polymerization of L-α-amino acids into polypeptides. The catalysis of peptide bond formation between amino acid substrates is based on entropy trapping, wherein the adjacency of transfer RNA (tRNA)-coupled acyl bonds in the P-site and the α-amino groups in the A-site aligns the substrates for coupling. The plasticity of this catalytic mechanism has been observed in both remnants of the evolution of the genetic code and modern efforts to reprogram the genetic code (e.g., ribosomal incorporation of non-canonical amino acids, ribosomal ester formation). However, the limits of ribosome-mediated polymerization are underexplored. Here, rather than peptide bonds, we demonstrate ribosome-mediated polymerization of pyridazinone bonds via a cyclocondensation reaction between activated γ-keto and α-hydrazino ester monomers. In addition, we demonstrate the ribosome-catalyzed synthesis of peptide-hybrid oligomers composed of multiple sequence-defined alternating pyridazinone linkages. Our results highlight the plasticity of the ribosome's ancient bond-formation mechanism, expand the range of non-canonical polymeric backbones that can be synthesized by the ribosome, and open the door to new applications in synthetic biology.


Asunto(s)
ARN de Transferencia , Ribosomas , Ribosomas/metabolismo , ARN de Transferencia/metabolismo , Código Genético , Péptidos/química , Aminoácidos/metabolismo , Biosíntesis de Proteínas
17.
J Am Chem Soc ; 144(37): 17269-17276, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36067375

RESUMEN

Here, we describe the prediction of the circular dichroism (CD) response of a three-component chiroptical sensor for enantiomeric excess (ee) determination of chiral amines using a multivariate fit to electronic and steric parameters. These computationally derived parameters can be computed for nearly any amine and correlate well with the CD response of the 12 amines comprising the training set. The resulting model was used to accurately predict the CD response of a test set of chiral amines. Theoretical calibration curves were then created and used to determine the ee of solutions of unknown ee. Using this method, the error in ee determination differed by less than 10% compared to experimentally generated calibration curves.


Asunto(s)
Aminas , Calibración , Dicroismo Circular , Estereoisomerismo
18.
Biochem Biophys Res Commun ; 627: 1-4, 2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-35998389

RESUMEN

Ricin toxin A-chain (RTA), a toxic protein from Ricinus communis, inactivates ribosomes to induce toxicity. The active site of RTA consists of two binding pockets. Many studies have focused on developing RTA inhibitors that can simultaneously bind to these critical pockets; however, almost all the inhibitors developed so far interact with only one pocket. In the present study, we discovered that pterin-7-carboxamides with aromatic l-amino acid pendants interacted with the active site of the enzyme in a 2-to-1 mode, where one inhibitor molecule bound to the primary pocket and the second one entered the secondary pocket in the active site of RTA. X-ray crystallographic analysis of inhibitor/RTA complexes revealed that the conformational changes of Tyr80 and Asn122 in RTA were critical for triggering the entry of inhibitor molecules into the secondary pocket of the RTA active site.


Asunto(s)
Ricina , Cristalografía por Rayos X , Ribosomas/metabolismo , Ricina/química , Ricina/metabolismo , Ricina/toxicidad
19.
ACS Cent Sci ; 8(8): 1125-1133, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36032764

RESUMEN

Molecular encoding in abiotic sequence-defined polymers (SDPs) has recently emerged as a versatile platform for information and data storage. However, the storage capacity of these sequence-defined polymers remains underwhelming compared to that of the information storing biopolymer DNA. In an effort to increase their information storage capacity, herein we describe the synthesis and simultaneous sequencing of eight sequence-defined 10-mer oligourethanes. Importantly, we demonstrate the use of different isotope labels, such as halogen tags, as a tool to deconvolute the complex sequence information found within a heterogeneous mixture of at least 96 unique molecules, with as little as four micromoles of total material. In doing so, relatively high-capacity data storage was achieved: 256 bits in this example, the most information stored in a single sample of abiotic SDPs without the use of long strands. Within the sequence information, a 256-bit cipher key was stored and retrieved. The key was used to encrypt and decrypt a plain text document containing The Wonderful Wizard of Oz. To validate this platform as a medium of molecular steganography and cryptography, the cipher key was hidden in the ink of a personal letter, mailed to a third party, extracted, sequenced, and deciphered successfully in the first try, thereby revealing the encrypted document.

20.
Bioconjug Chem ; 33(6): 1156-1165, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35622964

RESUMEN

A peptide sequencing scheme utilizing fluorescence microscopy and Edman degradation to determine the amino acid position in fluorophore-labeled peptides was recently reported, referred to as fluorosequencing. It was observed that multiple fluorophores covalently linked to a peptide scaffold resulted in a decrease in the anticipated fluorescence output and worsened the single-molecule fluorescence analysis. In this study, we report an improvement in the photophysical properties of fluorophore-labeled peptides by incorporating long and flexible (PEG)10 linkers at the peptide attachment points. Long linkers to the fluorophores were installed using copper-catalyzed azide-alkyne cycloaddition conditions. The photophysical properties of these peptides were analyzed in solution and immobilized on a microscope slide at the single-molecule level under peptide fluorosequencing conditions. Solution-phase fluorescence analysis showed improvements in both quantum yield and fluorescence lifetime with the long linkers. While on the solid support, photometry measurements showed significant increases in fluorescence brightness and 20 to 60% improvements in the ability to determine the amino acid position with fluorosequencing. This spatial distancing strategy demonstrates improvements in the peptide sequencing platform and provides a general approach for improving the photophysical properties in fluorophore-labeled macromolecules.


Asunto(s)
Colorantes Fluorescentes , Xantenos , Aminoácidos , Azidas/química , Colorantes Fluorescentes/química , Ionóforos , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA